MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssc2 Structured version   Visualization version   GIF version

Theorem ssc2 17798
Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
ssc2.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
ssc2.2 (𝜑𝐻cat 𝐽)
ssc2.3 (𝜑𝑋𝑆)
ssc2.4 (𝜑𝑌𝑆)
Assertion
Ref Expression
ssc2 (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))

Proof of Theorem ssc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssc2.3 . 2 (𝜑𝑋𝑆)
2 ssc2.4 . 2 (𝜑𝑌𝑆)
3 ssc2.2 . . . 4 (𝜑𝐻cat 𝐽)
4 ssc2.1 . . . . 5 (𝜑𝐻 Fn (𝑆 × 𝑆))
5 eqidd 2729 . . . . . 6 (𝜑 → dom dom 𝐽 = dom dom 𝐽)
63, 5sscfn2 17794 . . . . 5 (𝜑𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
7 sscrel 17789 . . . . . . 7 Rel ⊆cat
87brrelex2i 5729 . . . . . 6 (𝐻cat 𝐽𝐽 ∈ V)
9 dmexg 7903 . . . . . 6 (𝐽 ∈ V → dom 𝐽 ∈ V)
10 dmexg 7903 . . . . . 6 (dom 𝐽 ∈ V → dom dom 𝐽 ∈ V)
113, 8, 9, 104syl 19 . . . . 5 (𝜑 → dom dom 𝐽 ∈ V)
124, 6, 11isssc 17796 . . . 4 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
133, 12mpbid 231 . . 3 (𝜑 → (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
1413simprd 495 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))
15 oveq1 7421 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
16 oveq1 7421 . . . 4 (𝑥 = 𝑋 → (𝑥𝐽𝑦) = (𝑋𝐽𝑦))
1715, 16sseq12d 4011 . . 3 (𝑥 = 𝑋 → ((𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦) ↔ (𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦)))
18 oveq2 7422 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
19 oveq2 7422 . . . 4 (𝑦 = 𝑌 → (𝑋𝐽𝑦) = (𝑋𝐽𝑌))
2018, 19sseq12d 4011 . . 3 (𝑦 = 𝑌 → ((𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦) ↔ (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)))
2117, 20rspc2va 3620 . 2 (((𝑋𝑆𝑌𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))
221, 2, 14, 21syl21anc 837 1 (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  Vcvv 3470  wss 3945   class class class wbr 5142   × cxp 5670  dom cdm 5672   Fn wfn 6537  (class class class)co 7414  cat cssc 17783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-ixp 8910  df-ssc 17786
This theorem is referenced by:  ssctr  17801  ssceq  17802  subcss2  17822
  Copyright terms: Public domain W3C validator
OSZAR »