![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincid | Structured version Visualization version GIF version |
Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thincid.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincid.b | ⊢ 𝐵 = (Base‘𝐶) |
thincid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
thincid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincid.i | ⊢ 1 = (Id‘𝐶) |
thincid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) |
Ref | Expression |
---|---|
thincid | ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincid.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | thincid.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) | |
3 | thincid.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | thincid.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | thincid.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
6 | thincid.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
7 | 6 | thinccd 48022 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | 3, 4, 5, 7, 1 | catidcl 17656 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
9 | 1, 1, 2, 8, 3, 4, 6 | thincmo2 48025 | 1 ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 Hom chom 17238 Idccid 17639 ThinCatcthinc 48016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-cat 17642 df-cid 17643 df-thinc 48017 |
This theorem is referenced by: functhinclem4 48041 thincsect 48054 |
Copyright terms: Public domain | W3C validator |