![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trfilss | Structured version Visualization version GIF version |
Description: If 𝐴 is a member of the filter, then the filter truncated to 𝐴 is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
trfilss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restval 17408 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) = ran (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴))) | |
2 | filin 23789 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) | |
3 | 2 | 3expa 1115 | . . . . 5 ⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
4 | 3 | an32s 650 | . . . 4 ⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
5 | 4 | fmpttd 7122 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴)):𝐹⟶𝐹) |
6 | 5 | frnd 6729 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ran (𝑥 ∈ 𝐹 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝐹) |
7 | 1, 6 | eqsstrd 4016 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐹 ↾t 𝐴) ⊆ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ∩ cin 3944 ⊆ wss 3945 ↦ cmpt 5231 ran crn 5678 ‘cfv 6547 (class class class)co 7417 ↾t crest 17402 Filcfil 23780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-rest 17404 df-fbas 21281 df-fil 23781 |
This theorem is referenced by: fgtr 23825 flimrest 23918 |
Copyright terms: Public domain | W3C validator |