![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlnidat | Structured version Visualization version GIF version |
Description: The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
Ref | Expression |
---|---|
trlnidat.b | ⊢ 𝐵 = (Base‘𝐾) |
trlnidat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trlnidat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlnidat.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlnidat.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlnidat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐹) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlnidat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2727 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | trlnidat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | trlnidat.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | trlnidat.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | ltrnnid 39613 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
7 | simp11 1200 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simp2 1134 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → 𝑝 ∈ 𝐴) | |
9 | simp3l 1198 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → ¬ 𝑝(le‘𝐾)𝑊) | |
10 | simp12 1201 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → 𝐹 ∈ 𝑇) | |
11 | simp3r 1199 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → (𝐹‘𝑝) ≠ 𝑝) | |
12 | trlnidat.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
13 | 2, 3, 4, 5, 12 | trlat 39646 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑝) ≠ 𝑝)) → (𝑅‘𝐹) ∈ 𝐴) |
14 | 7, 8, 9, 10, 11, 13 | syl122anc 1376 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) → (𝑅‘𝐹) ∈ 𝐴) |
15 | 14 | rexlimdv3a 3155 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (∃𝑝 ∈ 𝐴 (¬ 𝑝(le‘𝐾)𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → (𝑅‘𝐹) ∈ 𝐴)) |
16 | 6, 15 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐹) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 ∃wrex 3066 class class class wbr 5150 I cid 5577 ↾ cres 5682 ‘cfv 6551 Basecbs 17185 lecple 17245 Atomscatm 38739 HLchlt 38826 LHypclh 39461 LTrncltrn 39578 trLctrl 39635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8851 df-proset 18292 df-poset 18310 df-plt 18327 df-lub 18343 df-glb 18344 df-join 18345 df-meet 18346 df-p0 18422 df-p1 18423 df-lat 18429 df-clat 18496 df-oposet 38652 df-ol 38654 df-oml 38655 df-covers 38742 df-ats 38743 df-atl 38774 df-cvlat 38798 df-hlat 38827 df-lhyp 39465 df-laut 39466 df-ldil 39581 df-ltrn 39582 df-trl 39636 |
This theorem is referenced by: ltrnnidn 39651 trlnidatb 39654 trlcone 40205 cdlemg46 40212 trljco 40217 cdlemh2 40293 cdlemh 40294 tendotr 40307 cdlemk3 40310 cdlemk12 40327 cdlemkole 40330 cdlemk14 40331 cdlemk15 40332 cdlemk1u 40336 cdlemk5u 40338 cdlemk12u 40349 cdlemk37 40391 cdlemk39 40393 cdlemkid1 40399 cdlemk47 40426 cdlemk51 40430 cdlemk52 40431 cdleml1N 40453 |
Copyright terms: Public domain | W3C validator |