![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsettps | Structured version Visualization version GIF version |
Description: If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tsettps.a | ⊢ 𝐴 = (Base‘𝐾) |
tsettps.j | ⊢ 𝐽 = (TopSet‘𝐾) |
Ref | Expression |
---|---|
tsettps | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsettps.a | . . . 4 ⊢ 𝐴 = (Base‘𝐾) | |
2 | tsettps.j | . . . 4 ⊢ 𝐽 = (TopSet‘𝐾) | |
3 | 1, 2 | topontopn 22835 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
4 | id 22 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ (TopOn‘𝐴)) | |
5 | 3, 4 | eqeltrrd 2830 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopOpen‘𝐾) ∈ (TopOn‘𝐴)) |
6 | eqid 2728 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
7 | 1, 6 | istps 22829 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘𝐴)) |
8 | 5, 7 | sylibr 233 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 Basecbs 17173 TopSetcts 17232 TopOpenctopn 17396 TopOnctopon 22805 TopSpctps 22827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-rest 17397 df-topn 17398 df-top 22789 df-topon 22806 df-topsp 22828 |
This theorem is referenced by: eltpsg 22838 eltpsgOLD 22839 indistpsALT 22909 indistpsALTOLD 22910 xrstps 23106 prdstps 23526 |
Copyright terms: Public domain | W3C validator |