![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz9.12lem2 | Structured version Visualization version GIF version |
Description: Lemma for tz9.12 9815. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
tz9.12lem.1 | ⊢ 𝐴 ∈ V |
tz9.12lem.2 | ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) |
Ref | Expression |
---|---|
tz9.12lem2 | ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.12lem.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | tz9.12lem.2 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
3 | 1, 2 | tz9.12lem1 9812 | . . 3 ⊢ (𝐹 “ 𝐴) ⊆ On |
4 | 2 | funmpt2 6593 | . . . . 5 ⊢ Fun 𝐹 |
5 | 1 | funimaex 6642 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐹 “ 𝐴) ∈ V |
7 | 6 | ssonunii 7784 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ On → ∪ (𝐹 “ 𝐴) ∈ On) |
8 | 3, 7 | ax-mp 5 | . 2 ⊢ ∪ (𝐹 “ 𝐴) ∈ On |
9 | 8 | onsuci 7843 | 1 ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {crab 3418 Vcvv 3461 ⊆ wss 3944 ∪ cuni 4909 ∩ cint 4950 ↦ cmpt 5232 “ cima 5681 Oncon0 6371 suc csuc 6373 Fun wfun 6543 ‘cfv 6549 𝑅1cr1 9787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-suc 6377 df-fun 6551 |
This theorem is referenced by: tz9.12lem3 9814 tz9.12 9815 |
Copyright terms: Public domain | W3C validator |