MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredgss Structured version   Visualization version   GIF version

Theorem upgredgss 29002
Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.)
Assertion
Ref Expression
upgredgss (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Distinct variable group:   𝑥,𝐺

Proof of Theorem upgredgss
StepHypRef Expression
1 edgval 28919 . 2 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 eqid 2725 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2725 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgrf 28956 . . 3 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
54frnd 6729 . 2 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
61, 5eqsstrid 4026 1 (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  {crab 3419  cdif 3942  wss 3945  c0 4323  𝒫 cpw 4603  {csn 4629   class class class wbr 5148  dom cdm 5677  ran crn 5678  cfv 6547  cle 11279  2c2 12297  chash 14322  Vtxcvtx 28866  iEdgciedg 28867  Edgcedg 28917  UPGraphcupgr 28950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-fv 6555  df-edg 28918  df-upgr 28952
This theorem is referenced by:  uspgrupgrushgr  29049  upgredgssspr  47333
  Copyright terms: Public domain W3C validator
OSZAR »