MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustne0 Structured version   Visualization version   GIF version

Theorem ustne0 24158
Description: A uniform structure cannot be empty. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
ustne0 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅)

Proof of Theorem ustne0
StepHypRef Expression
1 ustbasel 24151 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
21ne0d 4335 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wne 2929  c0 4322   × cxp 5676  cfv 6548  UnifOncust 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-res 5690  df-iota 6500  df-fun 6550  df-fv 6556  df-ust 24145
This theorem is referenced by:  utopbas  24180  cstucnd  24229
  Copyright terms: Public domain W3C validator
OSZAR »