![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustne0 | Structured version Visualization version GIF version |
Description: A uniform structure cannot be empty. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
ustne0 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustbasel 24151 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
2 | 1 | ne0d 4335 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ≠ wne 2929 ∅c0 4322 × cxp 5676 ‘cfv 6548 UnifOncust 24144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-res 5690 df-iota 6500 df-fun 6550 df-fv 6556 df-ust 24145 |
This theorem is referenced by: utopbas 24180 cstucnd 24229 |
Copyright terms: Public domain | W3C validator |