![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzin2 | Structured version Visualization version GIF version |
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
Ref | Expression |
---|---|
uzin2 | ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12861 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | ffn 6725 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ℤ≥ Fn ℤ |
4 | fvelrnb 6962 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴) |
6 | fvelrnb 6962 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵)) | |
7 | 3, 6 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵) |
8 | ineq1 4205 | . . 3 ⊢ ((ℤ≥‘𝑥) = 𝐴 → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ (ℤ≥‘𝑦))) | |
9 | 8 | eleq1d 2813 | . 2 ⊢ ((ℤ≥‘𝑥) = 𝐴 → (((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥)) |
10 | ineq2 4206 | . . 3 ⊢ ((ℤ≥‘𝑦) = 𝐵 → (𝐴 ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ 𝐵)) | |
11 | 10 | eleq1d 2813 | . 2 ⊢ ((ℤ≥‘𝑦) = 𝐵 → ((𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ 𝐵) ∈ ran ℤ≥)) |
12 | uzin 12898 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥))) | |
13 | ifcl 4575 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) | |
14 | 13 | ancoms 457 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) |
15 | fnfvelrn 7093 | . . . 4 ⊢ ((ℤ≥ Fn ℤ ∧ if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) | |
16 | 3, 14, 15 | sylancr 585 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) |
17 | 12, 16 | eqeltrd 2828 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥) |
18 | 5, 7, 9, 11, 17 | 2gencl 3514 | 1 ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3066 ∩ cin 3946 ifcif 4530 𝒫 cpw 4604 class class class wbr 5150 ran crn 5681 Fn wfn 6546 ⟶wf 6547 ‘cfv 6551 ≤ cle 11285 ℤcz 12594 ℤ≥cuz 12858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-pre-lttri 11218 ax-pre-lttrn 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-po 5592 df-so 5593 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-neg 11483 df-z 12595 df-uz 12859 |
This theorem is referenced by: rexanuz 15330 zfbas 23818 heibor1lem 37287 |
Copyright terms: Public domain | W3C validator |