![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > winacard | Structured version Visualization version GIF version |
Description: A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
winacard | ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elwina 10709 | . 2 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
2 | cardcf 10275 | . . . 4 ⊢ (card‘(cf‘𝐴)) = (cf‘𝐴) | |
3 | fveq2 6897 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → (card‘(cf‘𝐴)) = (card‘𝐴)) | |
4 | id 22 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴) | |
5 | 2, 3, 4 | 3eqtr3a 2792 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴) |
6 | 5 | 3ad2ant2 1132 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → (card‘𝐴) = 𝐴) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ∅c0 4323 class class class wbr 5148 ‘cfv 6548 ≺ csdm 8962 cardccrd 9958 cfccf 9960 Inaccwcwina 10705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-er 8724 df-en 8964 df-card 9962 df-cf 9964 df-wina 10707 |
This theorem is referenced by: winalim 10718 winalim2 10719 gchina 10722 inar1 10798 |
Copyright terms: Public domain | W3C validator |