![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpord2ind | Structured version Visualization version GIF version |
Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.) |
Ref | Expression |
---|---|
xpord2ind.1 | ⊢ 𝑅 Fr 𝐴 |
xpord2ind.2 | ⊢ 𝑅 Po 𝐴 |
xpord2ind.3 | ⊢ 𝑅 Se 𝐴 |
xpord2ind.4 | ⊢ 𝑆 Fr 𝐵 |
xpord2ind.5 | ⊢ 𝑆 Po 𝐵 |
xpord2ind.6 | ⊢ 𝑆 Se 𝐵 |
xpord2ind.7 | ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) |
xpord2ind.8 | ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) |
xpord2ind.9 | ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) |
xpord2ind.11 | ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) |
xpord2ind.12 | ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) |
xpord2ind.i | ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) |
Ref | Expression |
---|---|
xpord2ind | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
2 | xpord2ind.1 | . 2 ⊢ 𝑅 Fr 𝐴 | |
3 | xpord2ind.2 | . 2 ⊢ 𝑅 Po 𝐴 | |
4 | xpord2ind.3 | . 2 ⊢ 𝑅 Se 𝐴 | |
5 | xpord2ind.4 | . 2 ⊢ 𝑆 Fr 𝐵 | |
6 | xpord2ind.5 | . 2 ⊢ 𝑆 Po 𝐵 | |
7 | xpord2ind.6 | . 2 ⊢ 𝑆 Se 𝐵 | |
8 | xpord2ind.7 | . 2 ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) | |
9 | xpord2ind.8 | . 2 ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) | |
10 | xpord2ind.9 | . 2 ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) | |
11 | xpord2ind.11 | . 2 ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) | |
12 | xpord2ind.12 | . 2 ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) | |
13 | xpord2ind.i | . 2 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | xpord2indlem 8147 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 class class class wbr 5143 {copab 5205 Po wpo 5583 Fr wfr 5625 Se wse 5626 × cxp 5671 Predcpred 6299 ‘cfv 6543 1st c1st 7986 2nd c2nd 7987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-fr 5628 df-se 5629 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7988 df-2nd 7989 |
This theorem is referenced by: on2ind 8684 no2indslem 27865 |
Copyright terms: Public domain | W3C validator |