MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrrege0 Structured version   Visualization version   GIF version

Theorem xrrege0 13180
Description: A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrrege0 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)

Proof of Theorem xrrege0
StepHypRef Expression
1 ge0gtmnf 13178 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)
21ad2ant2r 746 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → -∞ < 𝐴)
3 simprr 772 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴𝐵)
42, 3jca 511 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (-∞ < 𝐴𝐴𝐵))
5 xrre 13175 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
64, 5syldan 590 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099   class class class wbr 5143  cr 11132  0cc0 11133  -∞cmnf 11271  *cxr 11272   < clt 11273  cle 11274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-addrcl 11194  ax-rnegex 11204  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279
This theorem is referenced by:  psmetlecl  24215  xmetlecl  24246  prdsxmetlem  24268  stdbdmet  24419  stdbdmopn  24421  bddnghm  24637  nmoid  24653  xrsmopn  24722  metdsre  24763  metnrmlem1a  24768  ovollecl  25406  itg2lecl  25662  probmeasb  34045  heicant  37123  mblfinlem3  37127  mblfinlem4  37128
  Copyright terms: Public domain W3C validator
OSZAR »