![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrrege0 | Structured version Visualization version GIF version |
Description: A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrrege0 | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0gtmnf 13178 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | |
2 | 1 | ad2ant2r 746 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → -∞ < 𝐴) |
3 | simprr 772 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ 𝐵) | |
4 | 2, 3 | jca 511 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) |
5 | xrre 13175 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | |
6 | 4, 5 | syldan 590 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 class class class wbr 5143 ℝcr 11132 0cc0 11133 -∞cmnf 11271 ℝ*cxr 11272 < clt 11273 ≤ cle 11274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-addrcl 11194 ax-rnegex 11204 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 |
This theorem is referenced by: psmetlecl 24215 xmetlecl 24246 prdsxmetlem 24268 stdbdmet 24419 stdbdmopn 24421 bddnghm 24637 nmoid 24653 xrsmopn 24722 metdsre 24763 metnrmlem1a 24768 ovollecl 25406 itg2lecl 25662 probmeasb 34045 heicant 37123 mblfinlem3 37127 mblfinlem4 37128 |
Copyright terms: Public domain | W3C validator |