MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00sr Structured version   Visualization version   GIF version

Theorem 00sr 11123
Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
00sr (𝐴R → (𝐴 ·R 0R) = 0R)

Proof of Theorem 00sr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 11080 . 2 R = ((P × P) / ~R )
2 oveq1 7427 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = (𝐴 ·R 0R))
32eqeq1d 2730 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R 0R) = 0R ↔ (𝐴 ·R 0R) = 0R))
4 1pr 11039 . . . . 5 1PP
5 mulsrpr 11100 . . . . 5 (((𝑥P𝑦P) ∧ (1PP ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R )
64, 4, 5mpanr12 704 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R )
7 mulclpr 11044 . . . . . . . . . 10 ((𝑥P ∧ 1PP) → (𝑥 ·P 1P) ∈ P)
84, 7mpan2 690 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) ∈ P)
9 mulclpr 11044 . . . . . . . . . 10 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
104, 9mpan2 690 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) ∈ P)
11 addclpr 11042 . . . . . . . . 9 (((𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P 1P) ∈ P) → ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P)
128, 10, 11syl2an 595 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P)
1312, 12anim12i 612 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P))
14 eqid 2728 . . . . . . . 8 (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P) = (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P)
15 enreceq 11090 . . . . . . . 8 (((((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P) ∧ (1PP ∧ 1PP)) → ([⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R ↔ (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P) = (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P)))
1614, 15mpbiri 258 . . . . . . 7 (((((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P) ∧ (1PP ∧ 1PP)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
1713, 16sylan 579 . . . . . 6 ((((𝑥P𝑦P) ∧ (𝑥P𝑦P)) ∧ (1PP ∧ 1PP)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
184, 4, 17mpanr12 704 . . . . 5 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
1918anidms 566 . . . 4 ((𝑥P𝑦P) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
206, 19eqtrd 2768 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨1P, 1P⟩] ~R )
21 df-0r 11084 . . . 4 0R = [⟨1P, 1P⟩] ~R
2221oveq2i 7431 . . 3 ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R )
2320, 22, 213eqtr4g 2793 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = 0R)
241, 3, 23ecoptocl 8826 1 (𝐴R → (𝐴 ·R 0R) = 0R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cop 4635  (class class class)co 7420  [cec 8723  Pcnp 10883  1Pc1p 10884   +P cpp 10885   ·P cmp 10886   ~R cer 10888  Rcnr 10889  0Rc0r 10890   ·R cmr 10894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-omul 8492  df-er 8725  df-ec 8727  df-qs 8731  df-ni 10896  df-pli 10897  df-mi 10898  df-lti 10899  df-plpq 10932  df-mpq 10933  df-ltpq 10934  df-enq 10935  df-nq 10936  df-erq 10937  df-plq 10938  df-mq 10939  df-1nq 10940  df-rq 10941  df-ltnq 10942  df-np 11005  df-1p 11006  df-plp 11007  df-mp 11008  df-ltp 11009  df-enr 11079  df-nr 11080  df-mr 11082  df-0r 11084
This theorem is referenced by:  pn0sr  11125  mulresr  11163  axi2m1  11183  axcnre  11188
  Copyright terms: Public domain W3C validator
OSZAR »