![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addclpr | Structured version Visualization version GIF version |
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addclpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plp 11006 | . 2 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦 +Q 𝑧)}) | |
2 | addclnq 10968 | . 2 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 +Q 𝑧) ∈ Q) | |
3 | ltanq 10994 | . 2 ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ +Q 𝑓) <Q (ℎ +Q 𝑔))) | |
4 | addcomnq 10974 | . 2 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
5 | addclprlem2 11040 | . 2 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → 𝑥 ∈ (𝐴 +P 𝐵))) | |
6 | 1, 2, 3, 4, 5 | genpcl 11031 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 (class class class)co 7417 +Q cplq 10878 Pcnp 10882 +P cpp 10884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8723 df-ni 10895 df-pli 10896 df-mi 10897 df-lti 10898 df-plpq 10931 df-mpq 10932 df-ltpq 10933 df-enq 10934 df-nq 10935 df-erq 10936 df-plq 10937 df-mq 10938 df-1nq 10939 df-rq 10940 df-ltnq 10941 df-np 11004 df-plp 11006 |
This theorem is referenced by: addasspr 11045 distrlem1pr 11048 distrlem4pr 11049 ltaddpr 11057 ltexprlem7 11065 ltaprlem 11067 ltapr 11068 addcanpr 11069 enrer 11086 addcmpblnr 11092 mulcmpblnr 11094 ltsrpr 11100 1sr 11104 m1r 11105 addclsr 11106 mulclsr 11107 addasssr 11111 mulasssr 11113 distrsr 11114 m1p1sr 11115 m1m1sr 11116 ltsosr 11117 0lt1sr 11118 0idsr 11120 1idsr 11121 00sr 11122 ltasr 11123 recexsrlem 11126 mulgt0sr 11128 mappsrpr 11131 |
Copyright terms: Public domain | W3C validator |