![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0e0icopnf | Structured version Visualization version GIF version |
Description: 0 is a member of (0[,)+∞). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0e0icopnf | ⊢ 0 ∈ (0[,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11240 | . 2 ⊢ 0 ∈ ℝ | |
2 | 0le0 12337 | . 2 ⊢ 0 ≤ 0 | |
3 | elrege0 13457 | . 2 ⊢ (0 ∈ (0[,)+∞) ↔ (0 ∈ ℝ ∧ 0 ≤ 0)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 0 ∈ (0[,)+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 class class class wbr 5142 (class class class)co 7414 ℝcr 11131 0cc0 11132 +∞cpnf 11269 ≤ cle 11273 [,)cico 13352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-addrcl 11193 ax-rnegex 11203 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-ico 13356 |
This theorem is referenced by: fsumge0 15767 rege0subm 21349 rge0srg 21364 itg2cnlem1 25684 ibladdlem 25742 itgaddlem1 25745 iblabslem 25750 iblabs 25751 iblmulc2 25753 itgmulc2lem1 25754 bddmulibl 25761 itggt0 25766 itgcn 25767 cxpcn3 26676 rlimcnp3 26892 efrlim 26894 efrlimOLD 26895 fsumrp0cl 32745 xrge0slmod 33054 esumpfinvallem 33687 ibladdnclem 37143 itgaddnclem1 37145 iblabsnclem 37150 iblabsnc 37151 iblmulc2nc 37152 itgmulc2nclem1 37153 itggt0cn 37157 ftc1anclem8 37167 sge0z 45757 sge0tsms 45762 hoidmvcl 45964 dig0 47673 |
Copyright terms: Public domain | W3C validator |