Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0tsms Structured version   Visualization version   GIF version

Theorem sge0tsms 45759
Description: Σ^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0tsms.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
sge0tsms.x (𝜑𝑋𝑉)
sge0tsms.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0tsms (𝜑 → (Σ^𝐹) ∈ (𝐺 tsums 𝐹))

Proof of Theorem sge0tsms
Dummy variables 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . 4 sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )
21a1i 11 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
3 xrltso 13147 . . . . . 6 < Or ℝ*
43supex 9481 . . . . 5 sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ V
54a1i 11 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ V)
6 elsng 4639 . . . 4 (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ V → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )} ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )))
75, 6syl 17 . . 3 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )} ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )))
82, 7mpbird 257 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )})
9 sge0tsms.x . . . . . . 7 (𝜑𝑋𝑉)
109adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
11 sge0tsms.f . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
1211adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
13 simpr 484 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
1410, 12, 13sge0pnfval 45752 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
1511ffnd 6718 . . . . . . . . 9 (𝜑𝐹 Fn 𝑋)
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹 Fn 𝑋)
17 fvelrnb 6954 . . . . . . . 8 (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
1816, 17syl 17 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
1913, 18mpbid 231 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑦𝑋 (𝐹𝑦) = +∞)
20 iccssxr 13434 . . . . . . . . . . . . . 14 (0[,]+∞) ⊆ ℝ*
21 sge0tsms.g . . . . . . . . . . . . . . 15 𝐺 = (ℝ*𝑠s (0[,]+∞))
22 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin))
2311adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
24 elinel1 4192 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
25 elpwi 4606 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2624, 25syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
2726adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
28 fssres 6758 . . . . . . . . . . . . . . . 16 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥𝑋) → (𝐹𝑥):𝑥⟶(0[,]+∞))
2923, 27, 28syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
30 elinel2 4193 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
3130adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
32 0red 11242 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 0 ∈ ℝ)
3329, 31, 32fdmfifsupp 9393 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥) finSupp 0)
3421, 22, 29, 33gsumge0cl 45750 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺 Σg (𝐹𝑥)) ∈ (0[,]+∞))
3520, 34sselid 3977 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺 Σg (𝐹𝑥)) ∈ ℝ*)
3635ralrimiva 3142 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐺 Σg (𝐹𝑥)) ∈ ℝ*)
37363ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐺 Σg (𝐹𝑥)) ∈ ℝ*)
38 eqid 2728 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥)))
3938rnmptss 7128 . . . . . . . . . . 11 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐺 Σg (𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ⊆ ℝ*)
4037, 39syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ⊆ ℝ*)
41 snelpwi 5440 . . . . . . . . . . . . . 14 (𝑦𝑋 → {𝑦} ∈ 𝒫 𝑋)
42 snfi 9063 . . . . . . . . . . . . . . 15 {𝑦} ∈ Fin
4342a1i 11 . . . . . . . . . . . . . 14 (𝑦𝑋 → {𝑦} ∈ Fin)
4441, 43elind 4191 . . . . . . . . . . . . 13 (𝑦𝑋 → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
45443ad2ant2 1132 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
4611adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑋) → 𝐹:𝑋⟶(0[,]+∞))
47 snssi 4808 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑋 → {𝑦} ⊆ 𝑋)
4847adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑋) → {𝑦} ⊆ 𝑋)
4946, 48fssresd 6759 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → (𝐹 ↾ {𝑦}):{𝑦}⟶(0[,]+∞))
5049feqmptd 6962 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → (𝐹 ↾ {𝑦}) = (𝑥 ∈ {𝑦} ↦ ((𝐹 ↾ {𝑦})‘𝑥)))
51 fvres 6911 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑦} → ((𝐹 ↾ {𝑦})‘𝑥) = (𝐹𝑥))
5251mpteq2ia 5246 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑦} ↦ ((𝐹 ↾ {𝑦})‘𝑥)) = (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))
5352a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → (𝑥 ∈ {𝑦} ↦ ((𝐹 ↾ {𝑦})‘𝑥)) = (𝑥 ∈ {𝑦} ↦ (𝐹𝑥)))
5450, 53eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → (𝐹 ↾ {𝑦}) = (𝑥 ∈ {𝑦} ↦ (𝐹𝑥)))
5554oveq2d 7431 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑋) → (𝐺 Σg (𝐹 ↾ {𝑦})) = (𝐺 Σg (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))))
56553adant3 1130 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐺 Σg (𝐹 ↾ {𝑦})) = (𝐺 Σg (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))))
57 xrge0cmn 21335 . . . . . . . . . . . . . . . . 17 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
5821, 57eqeltri 2825 . . . . . . . . . . . . . . . 16 𝐺 ∈ CMnd
59 cmnmnd 19746 . . . . . . . . . . . . . . . 16 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
6058, 59ax-mp 5 . . . . . . . . . . . . . . 15 𝐺 ∈ Mnd
6160a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝐺 ∈ Mnd)
62 simp2 1135 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝑦𝑋)
6311ffvelcdmda 7089 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ (0[,]+∞))
64633adant3 1130 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹𝑦) ∈ (0[,]+∞))
65 df-ss 3962 . . . . . . . . . . . . . . . . . 18 ((0[,]+∞) ⊆ ℝ* ↔ ((0[,]+∞) ∩ ℝ*) = (0[,]+∞))
6620, 65mpbi 229 . . . . . . . . . . . . . . . . 17 ((0[,]+∞) ∩ ℝ*) = (0[,]+∞)
6766eqcomi 2737 . . . . . . . . . . . . . . . 16 (0[,]+∞) = ((0[,]+∞) ∩ ℝ*)
68 ovex 7448 . . . . . . . . . . . . . . . . 17 (0[,]+∞) ∈ V
69 xrsbas 21305 . . . . . . . . . . . . . . . . . 18 * = (Base‘ℝ*𝑠)
7021, 69ressbas 17209 . . . . . . . . . . . . . . . . 17 ((0[,]+∞) ∈ V → ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺))
7168, 70ax-mp 5 . . . . . . . . . . . . . . . 16 ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺)
7267, 71eqtri 2756 . . . . . . . . . . . . . . 15 (0[,]+∞) = (Base‘𝐺)
73 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
7472, 73gsumsn 19903 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑦𝑋 ∧ (𝐹𝑦) ∈ (0[,]+∞)) → (𝐺 Σg (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))) = (𝐹𝑦))
7561, 62, 64, 74syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐺 Σg (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))) = (𝐹𝑦))
76 simp3 1136 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹𝑦) = +∞)
7756, 75, 763eqtrrd 2773 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ = (𝐺 Σg (𝐹 ↾ {𝑦})))
78 reseq2 5975 . . . . . . . . . . . . . 14 (𝑥 = {𝑦} → (𝐹𝑥) = (𝐹 ↾ {𝑦}))
7978oveq2d 7431 . . . . . . . . . . . . 13 (𝑥 = {𝑦} → (𝐺 Σg (𝐹𝑥)) = (𝐺 Σg (𝐹 ↾ {𝑦})))
8079rspceeqv 3630 . . . . . . . . . . . 12 (({𝑦} ∈ (𝒫 𝑋 ∩ Fin) ∧ +∞ = (𝐺 Σg (𝐹 ↾ {𝑦}))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (𝐺 Σg (𝐹𝑥)))
8145, 77, 80syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (𝐺 Σg (𝐹𝑥)))
82 pnfxr 11293 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
8382a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ ℝ*)
8438elrnmpt 5953 . . . . . . . . . . . 12 (+∞ ∈ ℝ* → (+∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (𝐺 Σg (𝐹𝑥))))
8583, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (+∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (𝐺 Σg (𝐹𝑥))))
8681, 85mpbird 257 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))))
87 supxrpnf 13324 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ⊆ ℝ* ∧ +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥)))) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)
8840, 86, 87syl2anc 583 . . . . . . . . 9 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)
89883exp 1117 . . . . . . . 8 (𝜑 → (𝑦𝑋 → ((𝐹𝑦) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)))
9089adantr 480 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (𝑦𝑋 → ((𝐹𝑦) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)))
9190rexlimdv 3149 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑦𝑋 (𝐹𝑦) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞))
9219, 91mpd 15 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)
9314, 92eqtr4d 2771 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
949adantr 480 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
9511adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
96 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
9795, 96fge0iccico 45749 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
9894, 97sge0reval 45751 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
9923, 27feqresmpt 6963 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥) = (𝑦𝑥 ↦ (𝐹𝑦)))
10099adantlr 714 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥) = (𝑦𝑥 ↦ (𝐹𝑦)))
101100oveq2d 7431 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺 Σg (𝐹𝑥)) = (𝐺 Σg (𝑦𝑥 ↦ (𝐹𝑦))))
10221fveq2i 6895 . . . . . . . . . . 11 (+g𝐺) = (+g‘(ℝ*𝑠s (0[,]+∞)))
103 eqid 2728 . . . . . . . . . . . . . 14 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
104 xrsadd 21306 . . . . . . . . . . . . . 14 +𝑒 = (+g‘ℝ*𝑠)
105103, 104ressplusg 17265 . . . . . . . . . . . . 13 ((0[,]+∞) ∈ V → +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞))))
10668, 105ax-mp 5 . . . . . . . . . . . 12 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
107106eqcomi 2737 . . . . . . . . . . 11 (+g‘(ℝ*𝑠s (0[,]+∞))) = +𝑒
108102, 107eqtr2i 2757 . . . . . . . . . 10 +𝑒 = (+g𝐺)
10921oveq1i 7425 . . . . . . . . . . 11 (𝐺s (0[,)+∞)) = ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞))
110 icossicc 13440 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
11168, 110pm3.2i 470 . . . . . . . . . . . 12 ((0[,]+∞) ∈ V ∧ (0[,)+∞) ⊆ (0[,]+∞))
112 ressabs 17224 . . . . . . . . . . . 12 (((0[,]+∞) ∈ V ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞)))
113111, 112ax-mp 5 . . . . . . . . . . 11 ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞))
114109, 113eqtr2i 2757 . . . . . . . . . 10 (ℝ*𝑠s (0[,)+∞)) = (𝐺s (0[,)+∞))
11558elexi 3490 . . . . . . . . . . 11 𝐺 ∈ V
116115a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺 ∈ V)
117 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin))
118110a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (0[,)+∞) ⊆ (0[,]+∞))
119 0xr 11286 . . . . . . . . . . . . 13 0 ∈ ℝ*
120119a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 0 ∈ ℝ*)
12182a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → +∞ ∈ ℝ*)
12295ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,]+∞))
12326sselda 3979 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑋)
124123adantll 713 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
125122, 124ffvelcdmd 7090 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
12620, 125sselid 3977 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ*)
127 iccgelb 13407 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑦) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑦))
128120, 121, 125, 127syl3anc 1369 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 0 ≤ (𝐹𝑦))
129 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑦) = +∞ → (𝐹𝑦) = +∞)
130129eqcomd 2734 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = +∞ → +∞ = (𝐹𝑦))
131130adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → +∞ = (𝐹𝑦))
13211ffund 6721 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
133132ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → Fun 𝐹)
13422, 123sylan 579 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
13511fdmd 6728 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐹 = 𝑋)
136135eqcomd 2734 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 = dom 𝐹)
137136ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑋 = dom 𝐹)
138134, 137eleqtrd 2831 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦 ∈ dom 𝐹)
139 fvelrn 7081 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ran 𝐹)
140133, 138, 139syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ran 𝐹)
141140adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → (𝐹𝑦) ∈ ran 𝐹)
142131, 141eqeltrd 2829 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → +∞ ∈ ran 𝐹)
143142adantl3r 749 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → +∞ ∈ ran 𝐹)
14496ad3antrrr 729 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → ¬ +∞ ∈ ran 𝐹)
145143, 144pm2.65da 816 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → ¬ (𝐹𝑦) = +∞)
146145neqned 2943 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ≠ +∞)
147 ge0xrre 44907 . . . . . . . . . . . . . 14 (((𝐹𝑦) ∈ (0[,]+∞) ∧ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ℝ)
148125, 146, 147syl2anc 583 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
149148ltpnfd 13128 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) < +∞)
150120, 121, 126, 128, 149elicod 13401 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
151 eqid 2728 . . . . . . . . . . 11 (𝑦𝑥 ↦ (𝐹𝑦)) = (𝑦𝑥 ↦ (𝐹𝑦))
152150, 151fmptd 7119 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝑦𝑥 ↦ (𝐹𝑦)):𝑥⟶(0[,)+∞))
153 0e0icopnf 13462 . . . . . . . . . . 11 0 ∈ (0[,)+∞)
154153a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 0 ∈ (0[,)+∞))
155 eliccxr 13439 . . . . . . . . . . . 12 (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*)
156 xaddlid 13248 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (0 +𝑒 𝑦) = 𝑦)
157 xaddrid 13247 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (𝑦 +𝑒 0) = 𝑦)
158156, 157jca 511 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → ((0 +𝑒 𝑦) = 𝑦 ∧ (𝑦 +𝑒 0) = 𝑦))
159155, 158syl 17 . . . . . . . . . . 11 (𝑦 ∈ (0[,]+∞) → ((0 +𝑒 𝑦) = 𝑦 ∧ (𝑦 +𝑒 0) = 𝑦))
160159adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ (0[,]+∞)) → ((0 +𝑒 𝑦) = 𝑦 ∧ (𝑦 +𝑒 0) = 𝑦))
16172, 108, 114, 116, 117, 118, 152, 154, 160gsumress 18636 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺 Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℝ*𝑠s (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
162 rege0subm 21350 . . . . . . . . . . . . 13 (0[,)+∞) ∈ (SubMnd‘ℂfld)
163162a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (0[,)+∞) ∈ (SubMnd‘ℂfld))
164 eqid 2728 . . . . . . . . . . . 12 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
165117, 163, 152, 164gsumsubm 18781 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℂfld Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℂflds (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
166 eqidd 2729 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((ℂflds (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℂflds (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
167 vex 3474 . . . . . . . . . . . . . 14 𝑥 ∈ V
168167mptex 7230 . . . . . . . . . . . . 13 (𝑦𝑥 ↦ (𝐹𝑦)) ∈ V
169168a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝑦𝑥 ↦ (𝐹𝑦)) ∈ V)
170 ovexd 7450 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℂflds (0[,)+∞)) ∈ V)
171 ovexd 7450 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℝ*𝑠s (0[,)+∞)) ∈ V)
172 rge0ssre 13460 . . . . . . . . . . . . . . . . 17 (0[,)+∞) ⊆ ℝ
173 ax-resscn 11190 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℂ
174172, 173sstri 3988 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℂ
175 cnfldbas 21277 . . . . . . . . . . . . . . . . 17 ℂ = (Base‘ℂfld)
176164, 175ressbas2 17212 . . . . . . . . . . . . . . . 16 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
177174, 176ax-mp 5 . . . . . . . . . . . . . . 15 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
178177eqcomi 2737 . . . . . . . . . . . . . 14 (Base‘(ℂflds (0[,)+∞))) = (0[,)+∞)
179110, 20sstri 3988 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ ℝ*
180 eqid 2728 . . . . . . . . . . . . . . . 16 (ℝ*𝑠s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞))
181180, 69ressbas2 17212 . . . . . . . . . . . . . . 15 ((0[,)+∞) ⊆ ℝ* → (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞))))
182179, 181ax-mp 5 . . . . . . . . . . . . . 14 (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞)))
183178, 182eqtri 2756 . . . . . . . . . . . . 13 (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞)))
184183a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞))))
185 rge0srg 21365 . . . . . . . . . . . . . . 15 (ℂflds (0[,)+∞)) ∈ SRing
186185a1i 11 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → (ℂflds (0[,)+∞)) ∈ SRing)
187 simpl 482 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → 𝑠 ∈ (Base‘(ℂflds (0[,)+∞))))
188 simpr 484 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → 𝑡 ∈ (Base‘(ℂflds (0[,)+∞))))
189 eqid 2728 . . . . . . . . . . . . . . 15 (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℂflds (0[,)+∞)))
190 eqid 2728 . . . . . . . . . . . . . . 15 (+g‘(ℂflds (0[,)+∞))) = (+g‘(ℂflds (0[,)+∞)))
191189, 190srgacl 20139 . . . . . . . . . . . . . 14 (((ℂflds (0[,)+∞)) ∈ SRing ∧ 𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) ∈ (Base‘(ℂflds (0[,)+∞))))
192186, 187, 188, 191syl3anc 1369 . . . . . . . . . . . . 13 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) ∈ (Base‘(ℂflds (0[,)+∞))))
193192adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) ∈ (Base‘(ℂflds (0[,)+∞))))
194172a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) → (0[,)+∞) ⊆ ℝ)
195 id 22 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑠 ∈ (Base‘(ℂflds (0[,)+∞))))
196195, 178eleqtrdi 2839 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑠 ∈ (0[,)+∞))
197194, 196sseldd 3980 . . . . . . . . . . . . . . 15 (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑠 ∈ ℝ)
198197adantr 480 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → 𝑠 ∈ ℝ)
199172a1i 11 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (Base‘(ℂflds (0[,)+∞))) → (0[,)+∞) ⊆ ℝ)
200 id 22 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑡 ∈ (Base‘(ℂflds (0[,)+∞))))
201200, 178eleqtrdi 2839 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑡 ∈ (0[,)+∞))
202199, 201sseldd 3980 . . . . . . . . . . . . . . 15 (𝑡 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑡 ∈ ℝ)
203202adantl 481 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → 𝑡 ∈ ℝ)
204 rexadd 13238 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠 +𝑒 𝑡) = (𝑠 + 𝑡))
205204eqcomd 2734 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠 + 𝑡) = (𝑠 +𝑒 𝑡))
206162elexi 3490 . . . . . . . . . . . . . . . . . . . 20 (0[,)+∞) ∈ V
207 cnfldadd 21279 . . . . . . . . . . . . . . . . . . . . 21 + = (+g‘ℂfld)
208164, 207ressplusg 17265 . . . . . . . . . . . . . . . . . . . 20 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
209206, 208ax-mp 5 . . . . . . . . . . . . . . . . . . 19 + = (+g‘(ℂflds (0[,)+∞)))
210209, 207eqtr3i 2758 . . . . . . . . . . . . . . . . . 18 (+g‘(ℂflds (0[,)+∞))) = (+g‘ℂfld)
211210, 207eqtr4i 2759 . . . . . . . . . . . . . . . . 17 (+g‘(ℂflds (0[,)+∞))) = +
212211oveqi 7428 . . . . . . . . . . . . . . . 16 (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠 + 𝑡)
213212a1i 11 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠 + 𝑡))
214180, 104ressplusg 17265 . . . . . . . . . . . . . . . . . . 19 ((0[,)+∞) ∈ V → +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞))))
215206, 214ax-mp 5 . . . . . . . . . . . . . . . . . 18 +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞)))
216215eqcomi 2737 . . . . . . . . . . . . . . . . 17 (+g‘(ℝ*𝑠s (0[,)+∞))) = +𝑒
217216oveqi 7428 . . . . . . . . . . . . . . . 16 (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡) = (𝑠 +𝑒 𝑡)
218217a1i 11 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡) = (𝑠 +𝑒 𝑡))
219205, 213, 2183eqtr4d 2778 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡))
220198, 203, 219syl2anc 583 . . . . . . . . . . . . 13 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡))
221220adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡))
222 funmpt 6586 . . . . . . . . . . . . 13 Fun (𝑦𝑥 ↦ (𝐹𝑦))
223222a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Fun (𝑦𝑥 ↦ (𝐹𝑦)))
224150, 177eleqtrdi 2839 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
225224ralrimiva 3142 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ∀𝑦𝑥 (𝐹𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
226151rnmptss 7128 . . . . . . . . . . . . 13 (∀𝑦𝑥 (𝐹𝑦) ∈ (Base‘(ℂflds (0[,)+∞))) → ran (𝑦𝑥 ↦ (𝐹𝑦)) ⊆ (Base‘(ℂflds (0[,)+∞))))
227225, 226syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ran (𝑦𝑥 ↦ (𝐹𝑦)) ⊆ (Base‘(ℂflds (0[,)+∞))))
228169, 170, 171, 184, 193, 221, 223, 227gsumpropd2 18634 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((ℂflds (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℝ*𝑠s (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
229165, 166, 2283eqtrd 2772 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℂfld Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℝ*𝑠s (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
23030adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
231148recnd 11267 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℂ)
232230, 231gsumfsum 21361 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℂfld Σg (𝑦𝑥 ↦ (𝐹𝑦))) = Σ𝑦𝑥 (𝐹𝑦))
233229, 232eqtr3d 2770 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((ℝ*𝑠s (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))) = Σ𝑦𝑥 (𝐹𝑦))
234101, 161, 2333eqtrrd 2773 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (𝐺 Σg (𝐹𝑥)))
235234mpteq2dva 5243 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))))
236235rneqd 5935 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))))
237236supeq1d 9464 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
23898, 237eqtrd 2768 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
23993, 238pm2.61dan 812 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
24021, 9, 11, 1xrge0tsms 24744 . . 3 (𝜑 → (𝐺 tsums 𝐹) = {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )})
241239, 240eleq12d 2823 . 2 (𝜑 → ((Σ^𝐹) ∈ (𝐺 tsums 𝐹) ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )}))
2428, 241mpbird 257 1 (𝜑 → (Σ^𝐹) ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2936  wral 3057  wrex 3066  Vcvv 3470  cin 3944  wss 3945  𝒫 cpw 4599  {csn 4625   class class class wbr 5143  cmpt 5226  dom cdm 5673  ran crn 5674  cres 5675  Fun wfun 6537   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7415  Fincfn 8958  supcsup 9458  cc 11131  cr 11132  0cc0 11133   + caddc 11136  +∞cpnf 11270  *cxr 11272   < clt 11273  cle 11274   +𝑒 cxad 13117  [,)cico 13353  [,]cicc 13354  Σcsu 15659  Basecbs 17174  s cress 17203  +gcplusg 17227   Σg cgsu 17416  *𝑠cxrs 17476  Mndcmnd 18688  SubMndcsubmnd 18733  CMndccmn 19729  SRingcsrg 20120  fldccnfld 21273   tsums ctsu 24024  Σ^csumge0 45741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212  ax-mulf 11213
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-fi 9429  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-q 12958  df-rp 13002  df-xadd 13120  df-ioo 13355  df-ioc 13356  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-sum 15660  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17398  df-topn 17399  df-0g 17417  df-gsum 17418  df-topgen 17419  df-ordt 17477  df-xrs 17478  df-mre 17560  df-mrc 17561  df-acs 17563  df-ps 18552  df-tsr 18553  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-grp 18887  df-minusg 18888  df-mulg 19018  df-cntz 19262  df-cmn 19731  df-abl 19732  df-mgp 20069  df-ur 20116  df-srg 20121  df-ring 20169  df-cring 20170  df-fbas 21270  df-fg 21271  df-cnfld 21274  df-top 22790  df-topon 22807  df-topsp 22829  df-bases 22843  df-ntr 22918  df-nei 22996  df-cn 23125  df-haus 23213  df-fil 23744  df-fm 23836  df-flim 23837  df-flf 23838  df-tsms 24025  df-sumge0 45742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »