![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1ewlk | Structured version Visualization version GIF version |
Description: A sequence of 1 edge is an s-walk of edges for all s. (Contributed by AV, 5-Jan-2021.) |
Ref | Expression |
---|---|
1ewlk | ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom (iEdg‘𝐺)) → 〈“𝐼”〉 ∈ (𝐺 EdgWalks 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cl 14590 | . . 3 ⊢ (𝐼 ∈ dom (iEdg‘𝐺) → 〈“𝐼”〉 ∈ Word dom (iEdg‘𝐺)) | |
2 | 1 | 3ad2ant3 1132 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom (iEdg‘𝐺)) → 〈“𝐼”〉 ∈ Word dom (iEdg‘𝐺)) |
3 | ral0 4514 | . . . 4 ⊢ ∀𝑘 ∈ ∅ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(〈“𝐼”〉‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(〈“𝐼”〉‘𝑘)))) | |
4 | s1len 14594 | . . . . . . . 8 ⊢ (♯‘〈“𝐼”〉) = 1 | |
5 | 4 | oveq2i 7435 | . . . . . . 7 ⊢ (1..^(♯‘〈“𝐼”〉)) = (1..^1) |
6 | fzo0 13694 | . . . . . . 7 ⊢ (1..^1) = ∅ | |
7 | 5, 6 | eqtri 2755 | . . . . . 6 ⊢ (1..^(♯‘〈“𝐼”〉)) = ∅ |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ dom (iEdg‘𝐺) → (1..^(♯‘〈“𝐼”〉)) = ∅) |
9 | 8 | raleqdv 3321 | . . . 4 ⊢ (𝐼 ∈ dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘〈“𝐼”〉))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(〈“𝐼”〉‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(〈“𝐼”〉‘𝑘)))) ↔ ∀𝑘 ∈ ∅ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(〈“𝐼”〉‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(〈“𝐼”〉‘𝑘)))))) |
10 | 3, 9 | mpbiri 257 | . . 3 ⊢ (𝐼 ∈ dom (iEdg‘𝐺) → ∀𝑘 ∈ (1..^(♯‘〈“𝐼”〉))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(〈“𝐼”〉‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(〈“𝐼”〉‘𝑘))))) |
11 | 10 | 3ad2ant3 1132 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom (iEdg‘𝐺)) → ∀𝑘 ∈ (1..^(♯‘〈“𝐼”〉))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(〈“𝐼”〉‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(〈“𝐼”〉‘𝑘))))) |
12 | eqid 2727 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
13 | 12 | isewlk 29434 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 〈“𝐼”〉 ∈ Word dom (iEdg‘𝐺)) → (〈“𝐼”〉 ∈ (𝐺 EdgWalks 𝑆) ↔ (〈“𝐼”〉 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘〈“𝐼”〉))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(〈“𝐼”〉‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(〈“𝐼”〉‘𝑘))))))) |
14 | 1, 13 | syl3an3 1162 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom (iEdg‘𝐺)) → (〈“𝐼”〉 ∈ (𝐺 EdgWalks 𝑆) ↔ (〈“𝐼”〉 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘〈“𝐼”〉))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(〈“𝐼”〉‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(〈“𝐼”〉‘𝑘))))))) |
15 | 2, 11, 14 | mpbir2and 711 | 1 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ 𝐼 ∈ dom (iEdg‘𝐺)) → 〈“𝐼”〉 ∈ (𝐺 EdgWalks 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3057 Vcvv 3471 ∩ cin 3946 ∅c0 4324 class class class wbr 5150 dom cdm 5680 ‘cfv 6551 (class class class)co 7424 1c1 11145 ≤ cle 11285 − cmin 11480 ℕ0*cxnn0 12580 ..^cfzo 13665 ♯chash 14327 Word cword 14502 〈“cs1 14583 iEdgciedg 28828 EdgWalks cewlks 29427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-fzo 13666 df-hash 14328 df-word 14503 df-s1 14584 df-ewlks 29430 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |