MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem4 Structured version   Visualization version   GIF version

Theorem abelthlem4 26370
Description: Lemma for abelth 26377. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
Assertion
Ref Expression
abelthlem4 (𝜑𝐹:𝑆⟶ℂ)
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12894 . . 3 0 = (ℤ‘0)
2 0zd 12600 . . 3 ((𝜑𝑥𝑆) → 0 ∈ ℤ)
3 fveq2 6897 . . . . . 6 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
4 oveq2 7428 . . . . . 6 (𝑚 = 𝑛 → (𝑥𝑚) = (𝑥𝑛))
53, 4oveq12d 7438 . . . . 5 (𝑚 = 𝑛 → ((𝐴𝑚) · (𝑥𝑚)) = ((𝐴𝑛) · (𝑥𝑛)))
6 eqid 2728 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
7 ovex 7453 . . . . 5 ((𝐴𝑛) · (𝑥𝑛)) ∈ V
85, 6, 7fvmpt 7005 . . . 4 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
98adantl 481 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
10 abelth.1 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
1110adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝐴:ℕ0⟶ℂ)
1211ffvelcdmda 7094 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
13 abelth.5 . . . . . . . 8 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
1413ssrab3 4078 . . . . . . 7 𝑆 ⊆ ℂ
1514a1i 11 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
1615sselda 3980 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
17 expcl 14076 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1816, 17sylan 579 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1912, 18mulcld 11264 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
20 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
21 abelth.3 . . . 4 (𝜑𝑀 ∈ ℝ)
22 abelth.4 . . . 4 (𝜑 → 0 ≤ 𝑀)
2310, 20, 21, 22, 13abelthlem3 26369 . . 3 ((𝜑𝑥𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))) ∈ dom ⇝ )
241, 2, 9, 19, 23isumcl 15739 . 2 ((𝜑𝑥𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
25 abelth.6 . 2 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
2624, 25fmptd 7124 1 (𝜑𝐹:𝑆⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {crab 3429  wss 3947   class class class wbr 5148  cmpt 5231  dom cdm 5678  wf 6544  cfv 6548  (class class class)co 7420  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  cle 11279  cmin 11474  0cn0 12502  seqcseq 13998  cexp 14058  abscabs 15213  cli 15460  Σcsu 15664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-pm 8847  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-xadd 13125  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-limsup 15447  df-clim 15464  df-rlim 15465  df-sum 15665  df-psmet 21270  df-xmet 21271  df-met 21272  df-bl 21273
This theorem is referenced by:  abelthlem7  26374  abelthlem8  26375  abelthlem9  26376  abelth  26377
  Copyright terms: Public domain W3C validator
OSZAR »