![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablsub2inv | Structured version Visualization version GIF version |
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.) |
Ref | Expression |
---|---|
ablsub2inv.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsub2inv.m | ⊢ − = (-g‘𝐺) |
ablsub2inv.n | ⊢ 𝑁 = (invg‘𝐺) |
ablsub2inv.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsub2inv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablsub2inv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ablsub2inv | ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsub2inv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2728 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | ablsub2inv.m | . . 3 ⊢ − = (-g‘𝐺) | |
4 | ablsub2inv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
5 | ablsub2inv.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
6 | ablgrp 19740 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | ablsub2inv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 1, 4 | grpinvcl 18944 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
10 | 7, 8, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
11 | ablsub2inv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | 1, 2, 3, 4, 7, 10, 11 | grpsubinv 18968 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = ((𝑁‘𝑋)(+g‘𝐺)𝑌)) |
13 | 1, 2 | ablcom 19754 | . . . . . 6 ⊢ ((𝐺 ∈ Abel ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
14 | 5, 10, 11, 13 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
15 | 1, 4 | grpinvinv 18962 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
16 | 7, 11, 15 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
17 | 16 | oveq1d 7435 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋)) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
18 | 14, 17 | eqtr4d 2771 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
19 | 1, 4 | grpinvcl 18944 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
20 | 7, 11, 19 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
21 | 1, 2, 4 | grpinvadd 18974 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌))) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
22 | 7, 8, 20, 21 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌))) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
23 | 18, 22 | eqtr4d 2771 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌)))) |
24 | 1, 2, 4, 3 | grpsubval 18942 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)(𝑁‘𝑌))) |
25 | 8, 11, 24 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)(𝑁‘𝑌))) |
26 | 25 | fveq2d 6901 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑋 − 𝑌)) = (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌)))) |
27 | 23, 26 | eqtr4d 2771 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑁‘(𝑋 − 𝑌))) |
28 | 1, 3, 4 | grpinvsub 18978 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
29 | 7, 8, 11, 28 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
30 | 12, 27, 29 | 3eqtrd 2772 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 Grpcgrp 18890 invgcminusg 18891 -gcsg 18892 Abelcabl 19736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-sbg 18895 df-cmn 19737 df-abl 19738 |
This theorem is referenced by: ngpinvds 24535 |
Copyright terms: Public domain | W3C validator |