![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablsub32 | Structured version Visualization version GIF version |
Description: Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
ablnncan.m | ⊢ − = (-g‘𝐺) |
ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsub32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablsub32 | ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑍) − 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablnncan.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablnncan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | ablsub32.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
4 | ablnncan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | eqid 2728 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | 4, 5 | ablcom 19754 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)𝑌)) |
7 | 1, 2, 3, 6 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑌(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)𝑌)) |
8 | 7 | oveq2d 7436 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌(+g‘𝐺)𝑍)) = (𝑋 − (𝑍(+g‘𝐺)𝑌))) |
9 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
10 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 4, 5, 9, 1, 10, 2, 3 | ablsubsub4 19773 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌(+g‘𝐺)𝑍))) |
12 | 4, 5, 9, 1, 10, 3, 2 | ablsubsub4 19773 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑍) − 𝑌) = (𝑋 − (𝑍(+g‘𝐺)𝑌))) |
13 | 8, 11, 12 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑍) − 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 -gcsg 18892 Abelcabl 19736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-sbg 18895 df-cmn 19737 df-abl 19738 |
This theorem is referenced by: ablnnncan1 19778 baerlem5alem2 41184 |
Copyright terms: Public domain | W3C validator |