![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abslt | Structured version Visualization version GIF version |
Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abslt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 765 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ∈ ℝ) | |
2 | 1 | renegcld 11671 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 ∈ ℝ) |
3 | 1 | recnd 11272 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ∈ ℂ) |
4 | abscl 15258 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) ∈ ℝ) |
6 | simplr 767 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐵 ∈ ℝ) | |
7 | leabs 15279 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴)) | |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 ≤ (abs‘-𝐴)) |
9 | absneg 15257 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | |
10 | 3, 9 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘-𝐴) = (abs‘𝐴)) |
11 | 8, 10 | breqtrd 5174 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 ≤ (abs‘𝐴)) |
12 | simpr 483 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) < 𝐵) | |
13 | 2, 5, 6, 11, 12 | lelttrd 11402 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 < 𝐵) |
14 | leabs 15279 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | |
15 | 14 | ad2antrr 724 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ≤ (abs‘𝐴)) |
16 | 1, 5, 6, 15, 12 | lelttrd 11402 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 < 𝐵) |
17 | 13, 16 | jca 510 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (-𝐴 < 𝐵 ∧ 𝐴 < 𝐵)) |
18 | 17 | ex 411 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 → (-𝐴 < 𝐵 ∧ 𝐴 < 𝐵))) |
19 | absor 15280 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | |
20 | 19 | adantr 479 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) |
21 | breq1 5151 | . . . . . . 7 ⊢ ((abs‘𝐴) = 𝐴 → ((abs‘𝐴) < 𝐵 ↔ 𝐴 < 𝐵)) | |
22 | 21 | biimprd 247 | . . . . . 6 ⊢ ((abs‘𝐴) = 𝐴 → (𝐴 < 𝐵 → (abs‘𝐴) < 𝐵)) |
23 | breq1 5151 | . . . . . . 7 ⊢ ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) < 𝐵 ↔ -𝐴 < 𝐵)) | |
24 | 23 | biimprd 247 | . . . . . 6 ⊢ ((abs‘𝐴) = -𝐴 → (-𝐴 < 𝐵 → (abs‘𝐴) < 𝐵)) |
25 | 22, 24 | jaoa 953 | . . . . 5 ⊢ (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((𝐴 < 𝐵 ∧ -𝐴 < 𝐵) → (abs‘𝐴) < 𝐵)) |
26 | 25 | ancomsd 464 | . . . 4 ⊢ (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((-𝐴 < 𝐵 ∧ 𝐴 < 𝐵) → (abs‘𝐴) < 𝐵)) |
27 | 20, 26 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 < 𝐵 ∧ 𝐴 < 𝐵) → (abs‘𝐴) < 𝐵)) |
28 | 18, 27 | impbid 211 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐴 < 𝐵 ∧ 𝐴 < 𝐵))) |
29 | ltnegcon1 11745 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴)) | |
30 | 29 | anbi1d 629 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 < 𝐵 ∧ 𝐴 < 𝐵) ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
31 | 28, 30 | bitrd 278 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 class class class wbr 5148 ‘cfv 6547 ℂcc 11136 ℝcr 11137 < clt 11278 ≤ cle 11279 -cneg 11475 abscabs 15214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 |
This theorem is referenced by: absdiflt 15297 abslti 15370 absltd 15409 tanregt0 26510 argregt0 26581 efopnlem2 26628 ftc1anclem1 37253 dvasin 37264 liminflimsupclim 45275 stoweidlem7 45475 |
Copyright terms: Public domain | W3C validator |