HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjadd Structured version   Visualization version   GIF version

Theorem adjadd 31897
Description: The adjoint of the sum of two operators. Theorem 3.11(iii) of [Beran] p. 106. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjadd ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (adj‘(𝑆 +op 𝑇)) = ((adj𝑆) +op (adj𝑇)))

Proof of Theorem adjadd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 31692 . . 3 (𝑆 ∈ dom adj𝑆: ℋ⟶ ℋ)
2 dmadjop 31692 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
3 hoaddcl 31562 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ)
41, 2, 3syl2an 595 . 2 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (𝑆 +op 𝑇): ℋ⟶ ℋ)
5 dmadjrn 31699 . . . 4 (𝑆 ∈ dom adj → (adj𝑆) ∈ dom adj)
6 dmadjop 31692 . . . 4 ((adj𝑆) ∈ dom adj → (adj𝑆): ℋ⟶ ℋ)
75, 6syl 17 . . 3 (𝑆 ∈ dom adj → (adj𝑆): ℋ⟶ ℋ)
8 dmadjrn 31699 . . . 4 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
9 dmadjop 31692 . . . 4 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
108, 9syl 17 . . 3 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
11 hoaddcl 31562 . . 3 (((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ) → ((adj𝑆) +op (adj𝑇)): ℋ⟶ ℋ)
127, 10, 11syl2an 595 . 2 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → ((adj𝑆) +op (adj𝑇)): ℋ⟶ ℋ)
13 adj2 31738 . . . . . . . 8 ((𝑆 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑆)‘𝑦)))
14133expb 1118 . . . . . . 7 ((𝑆 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑆)‘𝑦)))
1514adantlr 714 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑆)‘𝑦)))
16 adj2 31738 . . . . . . . 8 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
17163expb 1118 . . . . . . 7 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1817adantll 713 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1915, 18oveq12d 7433 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑥) ·ih 𝑦) + ((𝑇𝑥) ·ih 𝑦)) = ((𝑥 ·ih ((adj𝑆)‘𝑦)) + (𝑥 ·ih ((adj𝑇)‘𝑦))))
201ffvelcdmda 7089 . . . . . . 7 ((𝑆 ∈ dom adj𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
2120ad2ant2r 746 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑆𝑥) ∈ ℋ)
222ffvelcdmda 7089 . . . . . . 7 ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
2322ad2ant2lr 747 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
24 simprr 772 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
25 ax-his2 30887 . . . . . 6 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦) = (((𝑆𝑥) ·ih 𝑦) + ((𝑇𝑥) ·ih 𝑦)))
2621, 23, 24, 25syl3anc 1369 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦) = (((𝑆𝑥) ·ih 𝑦) + ((𝑇𝑥) ·ih 𝑦)))
27 simprl 770 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
28 adjcl 31736 . . . . . . 7 ((𝑆 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑆)‘𝑦) ∈ ℋ)
2928ad2ant2rl 748 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑆)‘𝑦) ∈ ℋ)
30 adjcl 31736 . . . . . . 7 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
3130ad2ant2l 745 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
32 his7 30894 . . . . . 6 ((𝑥 ∈ ℋ ∧ ((adj𝑆)‘𝑦) ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))) = ((𝑥 ·ih ((adj𝑆)‘𝑦)) + (𝑥 ·ih ((adj𝑇)‘𝑦))))
3327, 29, 31, 32syl3anc 1369 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))) = ((𝑥 ·ih ((adj𝑆)‘𝑦)) + (𝑥 ·ih ((adj𝑇)‘𝑦))))
3419, 26, 333eqtr4rd 2779 . . . 4 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))) = (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦))
357, 10anim12i 612 . . . . . . 7 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → ((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ))
36 hosval 31544 . . . . . . . 8 (((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
37363expa 1116 . . . . . . 7 ((((adj𝑆): ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
3835, 37sylan 579 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ 𝑦 ∈ ℋ) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
3938adantrl 715 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((adj𝑆) +op (adj𝑇))‘𝑦) = (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦)))
4039oveq2d 7431 . . . 4 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦)) = (𝑥 ·ih (((adj𝑆)‘𝑦) + ((adj𝑇)‘𝑦))))
411, 2anim12i 612 . . . . . . 7 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ))
42 hosval 31544 . . . . . . . 8 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
43423expa 1116 . . . . . . 7 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
4441, 43sylan 579 . . . . . 6 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
4544adantrr 716 . . . . 5 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
4645oveq1d 7430 . . . 4 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (((𝑆𝑥) + (𝑇𝑥)) ·ih 𝑦))
4734, 40, 463eqtr4rd 2779 . . 3 (((𝑆 ∈ dom adj𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦)))
4847ralrimivva 3196 . 2 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦)))
49 adjeq 31739 . 2 (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ((adj𝑆) +op (adj𝑇)): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 +op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((adj𝑆) +op (adj𝑇))‘𝑦))) → (adj‘(𝑆 +op 𝑇)) = ((adj𝑆) +op (adj𝑇)))
504, 12, 48, 49syl3anc 1369 1 ((𝑆 ∈ dom adj𝑇 ∈ dom adj) → (adj‘(𝑆 +op 𝑇)) = ((adj𝑆) +op (adj𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  dom cdm 5673  wf 6539  cfv 6543  (class class class)co 7415   + caddc 11136  chba 30723   + cva 30724   ·ih csp 30726   +op chos 30742  adjcado 30759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-hilex 30803  ax-hfvadd 30804  ax-hvcom 30805  ax-hvass 30806  ax-hv0cl 30807  ax-hvaddid 30808  ax-hfvmul 30809  ax-hvmulid 30810  ax-hvdistr2 30813  ax-hvmul0 30814  ax-hfi 30883  ax-his1 30886  ax-his2 30887  ax-his3 30888  ax-his4 30889
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-2 12300  df-cj 15073  df-re 15074  df-im 15075  df-hvsub 30775  df-hosum 31534  df-adjh 31653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »