MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ausgrusgri Structured version   Visualization version   GIF version

Theorem ausgrusgri 28974
Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020.)
Hypotheses
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
ausgrusgri.1 𝑂 = {𝑓𝑓:dom 𝑓1-1→ran 𝑓}
Assertion
Ref Expression
ausgrusgri ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → 𝐻 ∈ USGraph)
Distinct variable groups:   𝑣,𝑒,𝑥,𝐻   𝑓,𝐻   𝑥,𝑊
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒,𝑓)   𝑂(𝑥,𝑣,𝑒,𝑓)   𝑊(𝑣,𝑒,𝑓)

Proof of Theorem ausgrusgri
StepHypRef Expression
1 fvex 6904 . . . . 5 (Vtx‘𝐻) ∈ V
2 fvex 6904 . . . . 5 (Edg‘𝐻) ∈ V
3 ausgr.1 . . . . . 6 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (♯‘𝑥) = 2}}
43isausgr 28970 . . . . 5 (((Vtx‘𝐻) ∈ V ∧ (Edg‘𝐻) ∈ V) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
51, 2, 4mp2an 691 . . . 4 ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
6 edgval 28855 . . . . . . 7 (Edg‘𝐻) = ran (iEdg‘𝐻)
76a1i 11 . . . . . 6 (𝐻𝑊 → (Edg‘𝐻) = ran (iEdg‘𝐻))
87sseq1d 4009 . . . . 5 (𝐻𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ↔ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
9 ausgrusgri.1 . . . . . . . . . 10 𝑂 = {𝑓𝑓:dom 𝑓1-1→ran 𝑓}
109eleq2i 2821 . . . . . . . . 9 ((iEdg‘𝐻) ∈ 𝑂 ↔ (iEdg‘𝐻) ∈ {𝑓𝑓:dom 𝑓1-1→ran 𝑓})
11 fvex 6904 . . . . . . . . . 10 (iEdg‘𝐻) ∈ V
12 id 22 . . . . . . . . . . 11 (𝑓 = (iEdg‘𝐻) → 𝑓 = (iEdg‘𝐻))
13 dmeq 5900 . . . . . . . . . . 11 (𝑓 = (iEdg‘𝐻) → dom 𝑓 = dom (iEdg‘𝐻))
14 rneq 5932 . . . . . . . . . . 11 (𝑓 = (iEdg‘𝐻) → ran 𝑓 = ran (iEdg‘𝐻))
1512, 13, 14f1eq123d 6825 . . . . . . . . . 10 (𝑓 = (iEdg‘𝐻) → (𝑓:dom 𝑓1-1→ran 𝑓 ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻)))
1611, 15elab 3666 . . . . . . . . 9 ((iEdg‘𝐻) ∈ {𝑓𝑓:dom 𝑓1-1→ran 𝑓} ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))
1710, 16sylbb 218 . . . . . . . 8 ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))
18173ad2ant3 1133 . . . . . . 7 ((𝐻𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))
19 simp2 1135 . . . . . . 7 ((𝐻𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ (iEdg‘𝐻) ∈ 𝑂) → ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
20 f1ssr 6794 . . . . . . 7 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻) ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
2118, 19, 20syl2anc 583 . . . . . 6 ((𝐻𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
22213exp 1117 . . . . 5 (𝐻𝑊 → (ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})))
238, 22sylbid 239 . . . 4 (𝐻𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2} → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})))
245, 23biimtrid 241 . . 3 (𝐻𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})))
25243imp 1109 . 2 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
26 eqid 2728 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
27 eqid 2728 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
2826, 27isusgrs 28962 . . 3 (𝐻𝑊 → (𝐻 ∈ USGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
29283ad2ant1 1131 . 2 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → (𝐻 ∈ USGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
3025, 29mpbird 257 1 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → 𝐻 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1534  wcel 2099  {cab 2705  {crab 3428  Vcvv 3470  wss 3945  𝒫 cpw 4598   class class class wbr 5142  {copab 5204  dom cdm 5672  ran crn 5673  1-1wf1 6539  cfv 6542  2c2 12291  chash 14315  Vtxcvtx 28802  iEdgciedg 28803  Edgcedg 28853  USGraphcusgr 28955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-hash 14316  df-edg 28854  df-usgr 28957
This theorem is referenced by:  usgrausgrb  28975
  Copyright terms: Public domain W3C validator
OSZAR »