Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem3lem2 Structured version   Visualization version   GIF version

Theorem baerlem3lem2 41183
Description: Lemma for baerlem3 41186. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem3lem2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))

Proof of Theorem baerlem3lem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 20991 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 baerlem3.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
54eldifad 3959 . . . 4 (𝜑𝑌𝑉)
6 baerlem3.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
76eldifad 3959 . . . 4 (𝜑𝑍𝑉)
8 baerlem3.v . . . . 5 𝑉 = (Base‘𝑊)
9 baerlem3.m . . . . 5 = (-g𝑊)
10 baerlem3.s . . . . 5 = (LSSum‘𝑊)
11 baerlem3.n . . . . 5 𝑁 = (LSpan‘𝑊)
128, 9, 10, 11lspsntrim 20983 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑁‘{(𝑌 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
133, 5, 7, 12syl3anc 1369 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
148, 9, 11, 3, 5, 7lspsnsub 20891 . . . . 5 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{(𝑍 𝑌)}))
15 lmodabl 20792 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
163, 15syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Abel)
17 baerlem3.x . . . . . . . 8 (𝜑𝑋𝑉)
188, 9, 16, 17, 5, 7ablnnncan1 19778 . . . . . . 7 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
1918sneqd 4641 . . . . . 6 (𝜑 → {((𝑋 𝑌) (𝑋 𝑍))} = {(𝑍 𝑌)})
2019fveq2d 6901 . . . . 5 (𝜑 → (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}) = (𝑁‘{(𝑍 𝑌)}))
2114, 20eqtr4d 2771 . . . 4 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}))
228, 9lmodvsubcl 20790 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
233, 17, 5, 22syl3anc 1369 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
248, 9lmodvsubcl 20790 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
253, 17, 7, 24syl3anc 1369 . . . . 5 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
268, 9, 10, 11lspsntrim 20983 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉 ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})))
273, 23, 25, 26syl3anc 1369 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})))
2821, 27eqsstrd 4018 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})))
2913, 28ssind 4233 . 2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) ⊆ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
30 elin 3963 . . . . 5 (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ↔ (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
31 baerlem3.p . . . . . . 7 + = (+g𝑊)
32 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
33 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
34 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
358, 31, 32, 33, 34, 10, 11, 3, 5, 7lsmspsn 20969 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))))
368, 31, 32, 33, 34, 10, 11, 3, 23, 25lsmspsn 20969 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))))
3735, 36anbi12d 631 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))))))
3830, 37bitrid 283 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))))))
39 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
40 simp11 1201 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝜑)
4140, 1syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑊 ∈ LVec)
4240, 17syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑋𝑉)
43 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4440, 43syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
45 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4640, 45syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4740, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4840, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
49 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
50 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
51 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
52 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
53 simp12l 1284 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑎𝐵)
54 simp12r 1285 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑏𝐵)
55 simp2l 1197 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑑𝐵)
56 simp2r 1198 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑒𝐵)
57 simp13 1203 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
58 simp3 1136 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))))
598, 9, 39, 10, 11, 41, 42, 44, 46, 47, 48, 31, 34, 32, 33, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58baerlem3lem1 41180 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 = (𝑎 · (𝑌 𝑍)))
6040, 3syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑊 ∈ LMod)
618, 9lmodvsubcl 20790 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 𝑍) ∈ 𝑉)
623, 5, 7, 61syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (𝑌 𝑍) ∈ 𝑉)
6340, 62syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → (𝑌 𝑍) ∈ 𝑉)
648, 34, 32, 33, 11, 60, 53, 63lspsneli 20885 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → (𝑎 · (𝑌 𝑍)) ∈ (𝑁‘{(𝑌 𝑍)}))
6559, 64eqeltrd 2829 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)}))
66653exp 1117 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)}))))
6766rexlimdvv 3207 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))
68673exp 1117 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))))
6968rexlimdvv 3207 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)}))))
7069impd 410 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))
7138, 70sylbid 239 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))
7271ssrdv 3986 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ⊆ (𝑁‘{(𝑌 𝑍)}))
7329, 72eqssd 3997 1 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wrex 3067  cdif 3944  cin 3946  wss 3947  {csn 4629  {cpr 4631  cfv 6548  (class class class)co 7420  Basecbs 17180  +gcplusg 17233  Scalarcsca 17236   ·𝑠 cvsca 17237  0gc0g 17421  invgcminusg 18891  -gcsg 18892  LSSumclsm 19589  Abelcabl 19736  LModclmod 20743  LSpanclspn 20855  LVecclvec 20987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-grp 18893  df-minusg 18894  df-sbg 18895  df-subg 19078  df-cntz 19268  df-lsm 19591  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-oppr 20273  df-dvdsr 20296  df-unit 20297  df-invr 20327  df-drng 20626  df-lmod 20745  df-lss 20816  df-lsp 20856  df-lvec 20988
This theorem is referenced by:  baerlem3  41186
  Copyright terms: Public domain W3C validator
OSZAR »