![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > baerlem5b | Structured version Visualization version GIF version |
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Second equation of part (5) in [Baer] p. 46. (Contributed by NM, 13-Apr-2015.) |
Ref | Expression |
---|---|
baerlem3.v | ⊢ 𝑉 = (Base‘𝑊) |
baerlem3.m | ⊢ − = (-g‘𝑊) |
baerlem3.o | ⊢ 0 = (0g‘𝑊) |
baerlem3.s | ⊢ ⊕ = (LSSum‘𝑊) |
baerlem3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
baerlem3.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
baerlem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
baerlem3.c | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
baerlem3.d | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
baerlem3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
baerlem3.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
baerlem5a.p | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
baerlem5b | ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))}) ⊕ (𝑁‘{𝑋})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baerlem3.v | . 2 ⊢ 𝑉 = (Base‘𝑊) | |
2 | baerlem3.m | . 2 ⊢ − = (-g‘𝑊) | |
3 | baerlem3.o | . 2 ⊢ 0 = (0g‘𝑊) | |
4 | baerlem3.s | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
5 | baerlem3.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | baerlem3.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | baerlem3.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | baerlem3.c | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
9 | baerlem3.d | . 2 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
10 | baerlem3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
11 | baerlem3.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
12 | baerlem5a.p | . 2 ⊢ + = (+g‘𝑊) | |
13 | eqid 2725 | . 2 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
14 | eqid 2725 | . 2 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
15 | eqid 2725 | . 2 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
16 | eqid 2725 | . 2 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
17 | eqid 2725 | . 2 ⊢ (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊)) | |
18 | eqid 2725 | . 2 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
19 | eqid 2725 | . 2 ⊢ (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊)) | |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | baerlem5blem2 41315 | 1 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))}) ⊕ (𝑁‘{𝑋})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∖ cdif 3941 ∩ cin 3943 {csn 4630 {cpr 4632 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 Scalarcsca 17239 ·𝑠 cvsca 17240 0gc0g 17424 invgcminusg 18899 -gcsg 18900 LSSumclsm 19601 LSpanclspn 20867 LVecclvec 20999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-subg 19086 df-cntz 19280 df-lsm 19603 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 df-drng 20638 df-lmod 20757 df-lss 20828 df-lsp 20868 df-lvec 21000 |
This theorem is referenced by: baerlem5bmN 41320 baerlem5abmN 41321 mapdh6lem2N 41337 hdmap1l6lem2 41411 |
Copyright terms: Public domain | W3C validator |