![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlem8 | Structured version Visualization version GIF version |
Description: There are as many countings with ties starting with a ballot for 𝐴 as there are starting with a ballot for 𝐵. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlem8 | ⊢ (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) = (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . 3 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . 3 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . 3 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . 3 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | ballotth.r | . . 3 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlem7 34286 | . 2 ⊢ (𝑅 ↾ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |
12 | 1, 2, 3 | ballotlemoex 34236 | . . . . 5 ⊢ 𝑂 ∈ V |
13 | difexg 5330 | . . . . 5 ⊢ (𝑂 ∈ V → (𝑂 ∖ 𝐸) ∈ V) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (𝑂 ∖ 𝐸) ∈ V |
15 | 14 | rabex 5335 | . . 3 ⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ∈ V |
16 | 15 | f1oen 8994 | . 2 ⊢ ((𝑅 ↾ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} → {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ≈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
17 | hasheni 14343 | . 2 ⊢ ({𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ≈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} → (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) = (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) | |
18 | 11, 16, 17 | mp2b 10 | 1 ⊢ (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) = (♯‘{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 ∀wral 3050 {crab 3418 Vcvv 3461 ∖ cdif 3941 ∩ cin 3943 ifcif 4530 𝒫 cpw 4604 class class class wbr 5149 ↦ cmpt 5232 ↾ cres 5680 “ cima 5681 –1-1-onto→wf1o 6548 ‘cfv 6549 (class class class)co 7419 ≈ cen 8961 infcinf 9466 ℝcr 11139 0cc0 11140 1c1 11141 + caddc 11143 < clt 11280 ≤ cle 11281 − cmin 11476 / cdiv 11903 ℕcn 12245 ℤcz 12591 ...cfz 13519 ♯chash 14325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fz 13520 df-hash 14326 |
This theorem is referenced by: ballotth 34288 |
Copyright terms: Public domain | W3C validator |