MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsres Structured version   Visualization version   GIF version

Theorem bitsres 16445
Description: Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsres ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))

Proof of Theorem bitsres
StepHypRef Expression
1 simpl 481 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
2 2nn 12313 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
4 simpr 483 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
53, 4nnexpcld 14237 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
61, 5zmodcld 13887 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℕ0)
76nn0zd 12612 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℤ)
87znegcld 12696 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℤ)
9 sadadd 16439 . . 3 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
108, 1, 9syl2anc 582 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
11 sadadd 16439 . . . . . 6 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ (𝐴 mod (2↑𝑁)) ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
128, 7, 11syl2anc 582 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
138zcnd 12695 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℂ)
147zcnd 12695 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℂ)
1513, 14addcomd 11444 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))))
1614negidd 11589 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))) = 0)
1715, 16eqtrd 2765 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = 0)
1817fveq2d 6894 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = (bits‘0))
19 0bits 16411 . . . . . 6 (bits‘0) = ∅
2018, 19eqtrdi 2781 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = ∅)
2112, 20eqtrd 2765 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = ∅)
2221oveq1d 7429 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
23 bitsss 16398 . . . . 5 (bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0
24 bitsss 16398 . . . . 5 (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0
25 inss1 4221 . . . . . 6 ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ (bits‘𝐴)
26 bitsss 16398 . . . . . . 7 (bits‘𝐴) ⊆ ℕ0
2726a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
2825, 27sstrid 3983 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0)
29 sadass 16443 . . . . 5 (((bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
3023, 24, 28, 29mp3an12i 1461 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
31 bitsmod 16408 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
3231oveq1d 7429 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
33 inss1 4221 . . . . . . . . . 10 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (bits‘𝐴)
3433, 27sstrid 3983 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0)
35 fzouzdisj 13698 . . . . . . . . . . . 12 ((0..^𝑁) ∩ (ℤ𝑁)) = ∅
3635ineq2i 4201 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ∅)
37 inindi 4219 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁)))
38 in0 4385 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ∅) = ∅
3936, 37, 383eqtr3i 2761 . . . . . . . . . 10 (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅
4039a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅)
4134, 28, 40saddisj 16437 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁))))
42 indi 4266 . . . . . . . 8 ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁)))
4341, 42eqtr4di 2783 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))))
44 nn0uz 12892 . . . . . . . . . 10 0 = (ℤ‘0)
454, 44eleqtrdi 2835 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
46 fzouzsplit 13697 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4745, 46syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4844, 47eqtrid 2777 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ℕ0 = ((0..^𝑁) ∪ (ℤ𝑁)))
4926, 48sseqtrid 4024 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)))
50 df-ss 3956 . . . . . . . 8 ((bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)) ↔ ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5149, 50sylib 217 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5243, 51eqtrd 2765 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5332, 52eqtrd 2765 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5453oveq2d 7430 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
5530, 54eqtrd 2765 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
56 sadid2 16441 . . . 4 (((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0 → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5728, 56syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5822, 55, 573eqtr3d 2773 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = ((bits‘𝐴) ∩ (ℤ𝑁)))
591zcnd 12695 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
6013, 59addcomd 11444 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = (𝐴 + -(𝐴 mod (2↑𝑁))))
6159, 14negsubd 11605 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = (𝐴 − (𝐴 mod (2↑𝑁))))
6259, 14subcld 11599 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 − (𝐴 mod (2↑𝑁))) ∈ ℂ)
635nncnd 12256 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
645nnne0d 12290 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
6562, 63, 64divcan1d 12019 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = (𝐴 − (𝐴 mod (2↑𝑁))))
661zred 12694 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
675nnrpd 13044 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
68 moddiffl 13877 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
6966, 67, 68syl2anc 582 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
7069oveq1d 7429 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7161, 65, 703eqtr2d 2771 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7260, 71eqtrd 2765 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7372fveq2d 6894 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
7410, 58, 733eqtr3d 2773 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cun 3937  cin 3938  wss 3939  c0 4316  cfv 6541  (class class class)co 7414  cr 11135  0cc0 11136   + caddc 11139   · cmul 11141  cmin 11472  -cneg 11473   / cdiv 11899  cn 12240  2c2 12295  0cn0 12500  cz 12586  cuz 12850  +crp 13004  ..^cfzo 13657  cfl 13785   mod cmo 13864  cexp 14056  bitscbits 16391   sadd csad 16392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-had 1587  df-cad 1600  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-oadd 8487  df-er 8721  df-map 8843  df-pm 8844  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-oi 9531  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-xnn0 12573  df-z 12587  df-uz 12851  df-rp 13005  df-fz 13515  df-fzo 13658  df-fl 13787  df-mod 13865  df-seq 13997  df-exp 14057  df-hash 14320  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-clim 15462  df-sum 15663  df-dvds 16229  df-bits 16394  df-sad 16423
This theorem is referenced by:  bitsuz  16446
  Copyright terms: Public domain W3C validator
OSZAR »