MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolyval Structured version   Visualization version   GIF version

Theorem bpolyval 16019
Description: The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpolyval ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolyval
Dummy variables 𝑔 𝑚 𝑛 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . . . . 6 (♯‘dom 𝑐) ∈ V
2 oveq2 7422 . . . . . . 7 (𝑛 = (♯‘dom 𝑐) → (𝑋𝑛) = (𝑋↑(♯‘dom 𝑐)))
3 oveq1 7421 . . . . . . . . 9 (𝑛 = (♯‘dom 𝑐) → (𝑛C𝑚) = ((♯‘dom 𝑐)C𝑚))
4 oveq1 7421 . . . . . . . . . . 11 (𝑛 = (♯‘dom 𝑐) → (𝑛𝑚) = ((♯‘dom 𝑐) − 𝑚))
54oveq1d 7429 . . . . . . . . . 10 (𝑛 = (♯‘dom 𝑐) → ((𝑛𝑚) + 1) = (((♯‘dom 𝑐) − 𝑚) + 1))
65oveq2d 7430 . . . . . . . . 9 (𝑛 = (♯‘dom 𝑐) → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))
73, 6oveq12d 7432 . . . . . . . 8 (𝑛 = (♯‘dom 𝑐) → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = (((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
87sumeq2sdv 15676 . . . . . . 7 (𝑛 = (♯‘dom 𝑐) → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
92, 8oveq12d 7432 . . . . . 6 (𝑛 = (♯‘dom 𝑐) → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))))
101, 9csbie 3926 . . . . 5 (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))
11 oveq2 7422 . . . . . . . . . 10 (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘))
12 fveq2 6891 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑐𝑚) = (𝑐𝑘))
13 oveq2 7422 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑛𝑚) = (𝑛𝑘))
1413oveq1d 7429 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑛𝑚) + 1) = ((𝑛𝑘) + 1))
1512, 14oveq12d 7432 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑐𝑚) / ((𝑛𝑚) + 1)) = ((𝑐𝑘) / ((𝑛𝑘) + 1)))
1611, 15oveq12d 7432 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))))
1716cbvsumv 15668 . . . . . . . 8 Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1)))
18 dmeq 5900 . . . . . . . . 9 (𝑐 = 𝑔 → dom 𝑐 = dom 𝑔)
19 fveq1 6890 . . . . . . . . . . . 12 (𝑐 = 𝑔 → (𝑐𝑘) = (𝑔𝑘))
2019oveq1d 7429 . . . . . . . . . . 11 (𝑐 = 𝑔 → ((𝑐𝑘) / ((𝑛𝑘) + 1)) = ((𝑔𝑘) / ((𝑛𝑘) + 1)))
2120oveq2d 7430 . . . . . . . . . 10 (𝑐 = 𝑔 → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2221adantr 480 . . . . . . . . 9 ((𝑐 = 𝑔𝑘 ∈ dom 𝑐) → ((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2318, 22sumeq12dv 15678 . . . . . . . 8 (𝑐 = 𝑔 → Σ𝑘 ∈ dom 𝑐((𝑛C𝑘) · ((𝑐𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2417, 23eqtrid 2780 . . . . . . 7 (𝑐 = 𝑔 → Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1))) = Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))
2524oveq2d 7430 . . . . . 6 (𝑐 = 𝑔 → ((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2625csbeq2dv 3897 . . . . 5 (𝑐 = 𝑔(♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑚 ∈ dom 𝑐((𝑛C𝑚) · ((𝑐𝑚) / ((𝑛𝑚) + 1)))) = (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2710, 26eqtr3id 2782 . . . 4 (𝑐 = 𝑔 → ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))) = (♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
2818fveq2d 6895 . . . . 5 (𝑐 = 𝑔 → (♯‘dom 𝑐) = (♯‘dom 𝑔))
2928csbeq1d 3894 . . . 4 (𝑐 = 𝑔(♯‘dom 𝑐) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3027, 29eqtrd 2768 . . 3 (𝑐 = 𝑔 → ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
3130cbvmptv 5255 . 2 (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))) = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32 eqid 2728 . 2 wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1)))))) = wrecs( < , ℕ0, (𝑐 ∈ V ↦ ((𝑋↑(♯‘dom 𝑐)) − Σ𝑚 ∈ dom 𝑐(((♯‘dom 𝑐)C𝑚) · ((𝑐𝑚) / (((♯‘dom 𝑐) − 𝑚) + 1))))))
3331, 32bpolylem 16018 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  csb 3890  cmpt 5225  dom cdm 5672  cfv 6542  (class class class)co 7414  wrecscwrecs 8310  cc 11130  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137   < clt 11272  cmin 11468   / cdiv 11895  0cn0 12496  ...cfz 13510  cexp 14052  Ccbc 14287  chash 14315  Σcsu 15658   BernPoly cbp 16016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-seq 13993  df-hash 14316  df-sum 15659  df-bpoly 16017
This theorem is referenced by:  bpoly0  16020  bpoly1  16021  bpolycl  16022  bpolysum  16023  bpolydiflem  16024  bpoly2  16027  bpoly3  16028  bpoly4  16029
  Copyright terms: Public domain W3C validator
OSZAR »