HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  brafnmul Structured version   Visualization version   GIF version

Theorem brafnmul 31833
Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
brafnmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 · 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵)))

Proof of Theorem brafnmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hvmulcl 30895 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
2 brafval 31825 . . 3 ((𝐴 · 𝐵) ∈ ℋ → (bra‘(𝐴 · 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 · 𝐵))))
31, 2syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 · 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 · 𝐵))))
4 cjcl 15088 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
5 brafn 31829 . . . 4 (𝐵 ∈ ℋ → (bra‘𝐵): ℋ⟶ℂ)
6 hfmmval 31621 . . . 4 (((∗‘𝐴) ∈ ℂ ∧ (bra‘𝐵): ℋ⟶ℂ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥))))
74, 5, 6syl2an 594 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥))))
8 his5 30968 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih (𝐴 · 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵)))
983expa 1115 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih (𝐴 · 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵)))
109an32s 650 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih (𝐴 · 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵)))
11 braval 31826 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝐵)‘𝑥) = (𝑥 ·ih 𝐵))
1211adantll 712 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐵)‘𝑥) = (𝑥 ·ih 𝐵))
1312oveq2d 7435 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵)))
1410, 13eqtr4d 2768 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih (𝐴 · 𝐵)) = ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)))
1514mpteq2dva 5249 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 · 𝐵))) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥))))
167, 15eqtr4d 2768 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 · 𝐵))))
173, 16eqtr4d 2768 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 · 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  cc 11138   · cmul 11145  ccj 15079  chba 30801   · csm 30803   ·ih csp 30804   ·fn chft 30824  bracbr 30838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-hilex 30881  ax-hfvmul 30887  ax-hfi 30961  ax-his1 30964  ax-his3 30966
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-2 12308  df-cj 15082  df-re 15083  df-im 15084  df-hfmul 31616  df-bra 31732
This theorem is referenced by:  cnvbramul  31997
  Copyright terms: Public domain W3C validator
OSZAR »