Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc2 Structured version   Visualization version   GIF version

Theorem cdlemc2 39665
Description: Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
cdlemc2.l = (le‘𝐾)
cdlemc2.j = (join‘𝐾)
cdlemc2.m = (meet‘𝐾)
cdlemc2.a 𝐴 = (Atoms‘𝐾)
cdlemc2.h 𝐻 = (LHyp‘𝐾)
cdlemc2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemc2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))

Proof of Theorem cdlemc2
StepHypRef Expression
1 simp1l 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝐾 ∈ HL)
2 simp3ll 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑃𝐴)
3 simp3rl 1244 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑄𝐴)
4 cdlemc2.l . . . . . 6 = (le‘𝐾)
5 cdlemc2.j . . . . . 6 = (join‘𝐾)
6 cdlemc2.a . . . . . 6 𝐴 = (Atoms‘𝐾)
74, 5, 6hlatlej2 38848 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
81, 2, 3, 7syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑄 (𝑃 𝑄))
9 simp1 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 eqid 2728 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 6atbase 38761 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
123, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑄 ∈ (Base‘𝐾))
13 simp3l 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
14 cdlemc2.m . . . . . 6 = (meet‘𝐾)
15 cdlemc2.h . . . . . 6 𝐻 = (LHyp‘𝐾)
1610, 4, 5, 14, 6, 15cdlemc1 39664 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
179, 12, 13, 16syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑃 ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
188, 17breqtrrd 5176 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑄 (𝑃 ((𝑃 𝑄) 𝑊)))
19 simp2 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝐹𝑇)
201hllatd 38836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝐾 ∈ Lat)
2110, 6atbase 38761 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
222, 21syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑃 ∈ (Base‘𝐾))
2310, 5latjcl 18430 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
2420, 22, 12, 23syl3anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
25 simp1r 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑊𝐻)
2610, 15lhpbase 39471 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → 𝑊 ∈ (Base‘𝐾))
2810, 14latmcl 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
2920, 24, 27, 28syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))
3010, 5latjcl 18430 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾)) → (𝑃 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
3120, 22, 29, 30syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑃 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))
32 cdlemc2.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3310, 4, 15, 32ltrnle 39602 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ((𝑃 𝑄) 𝑊)) ∈ (Base‘𝐾))) → (𝑄 (𝑃 ((𝑃 𝑄) 𝑊)) ↔ (𝐹𝑄) (𝐹‘(𝑃 ((𝑃 𝑄) 𝑊)))))
349, 19, 12, 31, 33syl112anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 (𝑃 ((𝑃 𝑄) 𝑊)) ↔ (𝐹𝑄) (𝐹‘(𝑃 ((𝑃 𝑄) 𝑊)))))
3518, 34mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹𝑄) (𝐹‘(𝑃 ((𝑃 𝑄) 𝑊))))
3610, 5, 15, 32ltrnj 39605 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾))) → (𝐹‘(𝑃 ((𝑃 𝑄) 𝑊))) = ((𝐹𝑃) (𝐹‘((𝑃 𝑄) 𝑊))))
379, 19, 22, 29, 36syl112anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹‘(𝑃 ((𝑃 𝑄) 𝑊))) = ((𝐹𝑃) (𝐹‘((𝑃 𝑄) 𝑊))))
3810, 4, 14latmle2 18456 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
3920, 24, 27, 38syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑃 𝑄) 𝑊) 𝑊)
4010, 4, 15, 32ltrnval1 39607 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((𝑃 𝑄) 𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑊) 𝑊)) → (𝐹‘((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
419, 19, 29, 39, 40syl112anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹‘((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) 𝑊))
4241oveq2d 7436 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐹𝑃) (𝐹‘((𝑃 𝑄) 𝑊))) = ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
4337, 42eqtrd 2768 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹‘(𝑃 ((𝑃 𝑄) 𝑊))) = ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
4435, 43breqtrd 5174 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐹𝑄) ((𝐹𝑃) ((𝑃 𝑄) 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  (class class class)co 7420  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  Latclat 18422  Atomscatm 38735  HLchlt 38822  LHypclh 39457  LTrncltrn 39574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-map 8846  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578
This theorem is referenced by:  cdlemc5  39668
  Copyright terms: Public domain W3C validator
OSZAR »