Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1b Structured version   Visualization version   GIF version

Theorem cdleme1b 39699
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing 𝐹 is a lattice element. 𝐹 represents their f(r). (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
cdleme1.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdleme1b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹𝐵)

Proof of Theorem cdleme1b
StepHypRef Expression
1 cdleme1.f . 2 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
2 hllat 38835 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32ad2antrr 725 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
4 simpr3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
5 cdleme1.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cdleme1.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6atbase 38761 . . . . 5 (𝑅𝐴𝑅𝐵)
84, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐵)
9 cdleme1.l . . . . . 6 = (le‘𝐾)
10 cdleme1.j . . . . . 6 = (join‘𝐾)
11 cdleme1.m . . . . . 6 = (meet‘𝐾)
12 cdleme1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
13 cdleme1.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
149, 10, 11, 6, 12, 13, 5cdleme0aa 39683 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈𝐵)
15143adant3r3 1182 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑈𝐵)
165, 10latjcl 18431 . . . 4 ((𝐾 ∈ Lat ∧ 𝑅𝐵𝑈𝐵) → (𝑅 𝑈) ∈ 𝐵)
173, 8, 15, 16syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑈) ∈ 𝐵)
18 simpr2 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
195, 6atbase 38761 . . . . 5 (𝑄𝐴𝑄𝐵)
2018, 19syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐵)
21 simpr1 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
225, 6atbase 38761 . . . . . . 7 (𝑃𝐴𝑃𝐵)
2321, 22syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐵)
245, 10latjcl 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑅𝐵) → (𝑃 𝑅) ∈ 𝐵)
253, 23, 8, 24syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑅) ∈ 𝐵)
265, 12lhpbase 39471 . . . . . 6 (𝑊𝐻𝑊𝐵)
2726ad2antlr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑊𝐵)
285, 11latmcl 18432 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑅) 𝑊) ∈ 𝐵)
293, 25, 27, 28syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) 𝑊) ∈ 𝐵)
305, 10latjcl 18431 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ ((𝑃 𝑅) 𝑊) ∈ 𝐵) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵)
313, 20, 29, 30syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵)
325, 11latmcl 18432 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 𝑈) ∈ 𝐵 ∧ (𝑄 ((𝑃 𝑅) 𝑊)) ∈ 𝐵) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ 𝐵)
333, 17, 31, 32syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ 𝐵)
341, 33eqeltrid 2833 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  Basecbs 17180  lecple 17240  joincjn 18303  meetcmee 18304  Latclat 18423  Atomscatm 38735  HLchlt 38822  LHypclh 39457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-lat 18424  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-lhyp 39461
This theorem is referenced by:  cdleme3c  39703  cdleme4a  39712  cdleme5  39713  cdleme7e  39720  cdleme11  39743  cdleme15  39751  cdleme22gb  39767  cdleme19b  39777  cdleme19e  39780  cdleme20d  39785  cdleme20j  39791  cdleme20k  39792  cdleme20l2  39794  cdleme20l  39795  cdleme20m  39796  cdleme22e  39817  cdleme22eALTN  39818  cdleme22f  39819  cdleme27cl  39839  cdlemefr27cl  39876  cdleme35fnpq  39922
  Copyright terms: Public domain W3C validator
OSZAR »