Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19e Structured version   Visualization version   GIF version

Theorem cdleme19e 39780
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, line 2. 𝐷, 𝐹, 𝑌, 𝐺 represent s2, f(s), t2, f(t). We prove f(s) s2=f(t) t2. (Contributed by NM, 14-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l = (le‘𝐾)
cdleme19.j = (join‘𝐾)
cdleme19.m = (meet‘𝐾)
cdleme19.a 𝐴 = (Atoms‘𝐾)
cdleme19.h 𝐻 = (LHyp‘𝐾)
cdleme19.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme19.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme19.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme19.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme19.y 𝑌 = ((𝑅 𝑇) 𝑊)
Assertion
Ref Expression
cdleme19e ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝐹 𝐷) = (𝐺 𝑌))

Proof of Theorem cdleme19e
StepHypRef Expression
1 simp11l 1282 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝐾 ∈ HL)
21hllatd 38836 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝐾 ∈ Lat)
3 simp11r 1283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑊𝐻)
4 simp12l 1284 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑃𝐴)
5 simp13l 1286 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑄𝐴)
6 simp21l 1288 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑆𝐴)
7 cdleme19.l . . . . 5 = (le‘𝐾)
8 cdleme19.j . . . . 5 = (join‘𝐾)
9 cdleme19.m . . . . 5 = (meet‘𝐾)
10 cdleme19.a . . . . 5 𝐴 = (Atoms‘𝐾)
11 cdleme19.h . . . . 5 𝐻 = (LHyp‘𝐾)
12 cdleme19.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
13 cdleme19.f . . . . 5 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
14 eqid 2728 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
157, 8, 9, 10, 11, 12, 13, 14cdleme1b 39699 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → 𝐹 ∈ (Base‘𝐾))
161, 3, 4, 5, 6, 15syl23anc 1375 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝐹 ∈ (Base‘𝐾))
17 simp22l 1290 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑇𝐴)
18 cdleme19.g . . . . 5 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
197, 8, 9, 10, 11, 12, 18, 14cdleme1b 39699 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑇𝐴)) → 𝐺 ∈ (Base‘𝐾))
201, 3, 4, 5, 17, 19syl23anc 1375 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝐺 ∈ (Base‘𝐾))
2114, 8latjcom 18439 . . 3 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝐺 ∈ (Base‘𝐾)) → (𝐹 𝐺) = (𝐺 𝐹))
222, 16, 20, 21syl3anc 1369 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝐹 𝐺) = (𝐺 𝐹))
23 cdleme19.d . . 3 𝐷 = ((𝑅 𝑆) 𝑊)
24 cdleme19.y . . 3 𝑌 = ((𝑅 𝑇) 𝑊)
257, 8, 9, 10, 11, 12, 13, 18, 23, 24cdleme19d 39779 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝐹 𝐷) = (𝐹 𝐺))
26 simp11 1201 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simp12 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
28 simp13 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
29 simp22 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
30 simp21 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
31 simp23 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑅𝐴)
32 simp31l 1294 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑃𝑄)
33 simp31r 1295 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑆𝑇)
3433necomd 2993 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑇𝑆)
3532, 34jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝑃𝑄𝑇𝑆))
36 simp32r 1297 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → ¬ 𝑇 (𝑃 𝑄))
37 simp32l 1296 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → ¬ 𝑆 (𝑃 𝑄))
3836, 37jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄)))
39 simp33l 1298 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑅 (𝑃 𝑄))
40 simp33r 1299 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑅 (𝑆 𝑇))
418, 10hlatjcom 38840 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) = (𝑇 𝑆))
421, 6, 17, 41syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝑆 𝑇) = (𝑇 𝑆))
4340, 42breqtrd 5174 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → 𝑅 (𝑇 𝑆))
4439, 43jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑇 𝑆)))
457, 8, 9, 10, 11, 12, 18, 13, 24, 23cdleme19d 39779 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑇𝑆) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑇 𝑆)))) → (𝐺 𝑌) = (𝐺 𝐹))
4626, 27, 28, 29, 30, 31, 35, 38, 44, 45syl333anc 1400 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝐺 𝑌) = (𝐺 𝐹))
4722, 25, 463eqtr4d 2778 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ 𝑅𝐴) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑅 (𝑆 𝑇)))) → (𝐹 𝐷) = (𝐺 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937   class class class wbr 5148  cfv 6548  (class class class)co 7420  Basecbs 17180  lecple 17240  joincjn 18303  meetcmee 18304  Latclat 18423  Atomscatm 38735  HLchlt 38822  LHypclh 39457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-lplanes 38972  df-lvols 38973  df-lines 38974  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461
This theorem is referenced by:  cdleme19f  39781
  Copyright terms: Public domain W3C validator
OSZAR »