![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatjcom | Structured version Visualization version GIF version |
Description: Commutatitivity of join operation. Frequently-used special case of latjcom 18432 for atoms. (Contributed by NM, 15-Jun-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatjcom | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38829 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2728 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatjcom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 38755 | . 2 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 38755 | . 2 ⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) |
6 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 2, 6 | latjcom 18432 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
8 | 1, 4, 5, 7 | syl3an 1158 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 joincjn 18296 Latclat 18416 Atomscatm 38729 HLchlt 38816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-lub 18331 df-join 18333 df-lat 18417 df-ats 38733 df-atl 38764 df-cvlat 38788 df-hlat 38817 |
This theorem is referenced by: hlatj12 38837 hlatjrot 38839 hlatlej2 38842 atbtwnex 38915 3noncolr2 38916 hlatcon2 38919 3dimlem2 38926 3dimlem3 38928 3dimlem3OLDN 38929 3dimlem4 38931 3dimlem4OLDN 38932 ps-1 38944 hlatexch4 38948 lplnribN 39018 4atlem10 39073 4atlem11 39076 dalemswapyz 39123 dalem-cly 39138 dalemswapyzps 39157 dalem24 39164 dalem25 39165 dalem44 39183 2llnma1 39254 2llnma3r 39255 2llnma2rN 39257 llnexchb2 39336 dalawlem4 39341 dalawlem5 39342 dalawlem9 39346 dalawlem11 39348 dalawlem12 39349 dalawlem15 39352 4atexlemex2 39538 4atexlemcnd 39539 ltrncnv 39613 trlcnv 39632 cdlemc6 39663 cdleme7aa 39709 cdleme12 39738 cdleme15a 39741 cdleme15c 39743 cdleme17c 39755 cdlemeda 39765 cdleme19a 39770 cdleme19e 39774 cdleme20bN 39777 cdleme20g 39782 cdleme20m 39790 cdleme21c 39794 cdleme22f 39813 cdleme22g 39815 cdleme35b 39917 cdleme35f 39921 cdleme37m 39929 cdleme39a 39932 cdleme42h 39949 cdleme43aN 39956 cdleme43bN 39957 cdleme43dN 39959 cdleme46f2g2 39960 cdleme46f2g1 39961 cdlemeg46c 39980 cdlemeg46nlpq 39984 cdlemeg46ngfr 39985 cdlemeg46rgv 39995 cdlemeg46gfv 39997 cdlemg2kq 40069 cdlemg4a 40075 cdlemg4d 40080 cdlemg4 40084 cdlemg8c 40096 cdlemg11aq 40105 cdlemg10a 40107 cdlemg12g 40116 cdlemg12 40117 cdlemg13 40119 cdlemg17pq 40139 cdlemg18b 40146 cdlemg18c 40147 cdlemg19 40151 cdlemg21 40153 cdlemk7 40315 cdlemk7u 40337 cdlemkfid1N 40388 dia2dimlem1 40531 dia2dimlem3 40533 dihjatcclem3 40887 dihjat 40890 |
Copyright terms: Public domain | W3C validator |