![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjcn2 | Structured version Visualization version GIF version |
Description: The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
cjcn2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjf 15092 | . 2 ⊢ ∗:ℂ⟶ℂ | |
2 | cjcl 15093 | . . . . 5 ⊢ (𝑧 ∈ ℂ → (∗‘𝑧) ∈ ℂ) | |
3 | cjcl 15093 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
4 | subcl 11496 | . . . . 5 ⊢ (((∗‘𝑧) ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → ((∗‘𝑧) − (∗‘𝐴)) ∈ ℂ) | |
5 | 2, 3, 4 | syl2an 594 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((∗‘𝑧) − (∗‘𝐴)) ∈ ℂ) |
6 | 5 | abscld 15424 | . . 3 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((∗‘𝑧) − (∗‘𝐴))) ∈ ℝ) |
7 | cjsub 15137 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(𝑧 − 𝐴)) = ((∗‘𝑧) − (∗‘𝐴))) | |
8 | 7 | fveq2d 6900 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(∗‘(𝑧 − 𝐴))) = (abs‘((∗‘𝑧) − (∗‘𝐴)))) |
9 | subcl 11496 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) | |
10 | 9 | abscjd 15438 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(∗‘(𝑧 − 𝐴))) = (abs‘(𝑧 − 𝐴))) |
11 | 8, 10 | eqtr3d 2767 | . . 3 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((∗‘𝑧) − (∗‘𝐴))) = (abs‘(𝑧 − 𝐴))) |
12 | 6, 11 | eqled 11354 | . 2 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((∗‘𝑧) − (∗‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
13 | 1, 12 | cn1lem 15583 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 ℂcc 11143 < clt 11285 − cmin 11481 ℝ+crp 13014 ∗ccj 15084 abscabs 15222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9472 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-seq 14008 df-exp 14068 df-cj 15087 df-re 15088 df-im 15089 df-sqrt 15223 df-abs 15224 |
This theorem is referenced by: climcj 15590 rlimcj 15595 cjcncf 24873 |
Copyright terms: Public domain | W3C validator |