![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf2 | Structured version Visualization version GIF version |
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf2.k | ⊢ Ⅎ𝑘𝜑 |
climinf2.n | ⊢ Ⅎ𝑘𝐹 |
climinf2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinf2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinf2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinf2.l | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinf2.e | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climinf2 | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf2.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climinf2.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climinf2.f | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | climinf2.k | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
5 | nfv 1910 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
6 | 4, 5 | nfan 1895 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
7 | climinf2.n | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
8 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
9 | 7, 8 | nffv 6907 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
10 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
11 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
12 | 7, 11 | nffv 6907 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
13 | 9, 10, 12 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗) |
14 | 6, 13 | nfim 1892 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
15 | eleq1w 2812 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 629 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | fvoveq1 7443 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
18 | fveq2 6897 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
19 | 17, 18 | breq12d 5161 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗))) |
20 | 16, 19 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)))) |
21 | climinf2.l | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
22 | 14, 20, 21 | chvarfv 2229 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
23 | climinf2.e | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
24 | breq1 5151 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑘) ↔ 𝑦 ≤ (𝐹‘𝑘))) | |
25 | 24 | ralbidv 3174 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘))) |
26 | nfv 1910 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑦 ≤ (𝐹‘𝑘) | |
27 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑦 | |
28 | 27, 10, 12 | nfbr 5195 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑦 ≤ (𝐹‘𝑗) |
29 | 18 | breq2d 5160 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑦 ≤ (𝐹‘𝑘) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
30 | 26, 28, 29 | cbvralw 3300 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗)) |
31 | 30 | a1i 11 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗))) |
32 | 25, 31 | bitrd 279 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗))) |
33 | 32 | cbvrexvw 3232 | . . 3 ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗)) |
34 | 23, 33 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑗)) |
35 | 1, 2, 3, 22, 34 | climinf2lem 45094 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2879 ∀wral 3058 ∃wrex 3067 class class class wbr 5148 ran crn 5679 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 infcinf 9464 ℝcr 11137 1c1 11139 + caddc 11141 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 ℤcz 12588 ℤ≥cuz 12852 ⇝ cli 15460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 |
This theorem is referenced by: climinf2mpt 45102 climinfmpt 45103 climinf3 45104 |
Copyright terms: Public domain | W3C validator |