Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrescn Structured version   Visualization version   GIF version

Theorem climrescn 45136
Description: A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climrescn.m (𝜑𝑀 ∈ ℤ)
climrescn.z 𝑍 = (ℤ𝑀)
climrescn.f (𝜑𝐹 Fn 𝑍)
climrescn.c (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climrescn (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
Distinct variable groups:   𝑗,𝐹   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗)   𝑀(𝑗)

Proof of Theorem climrescn
Dummy variables 𝑖 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1910 . . . . . 6 𝑘(𝜑𝑖𝑍)
2 nfra1 3278 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)
31, 2nfan 1895 . . . . 5 𝑘((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
4 climrescn.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
54uztrn2 12871 . . . . . . . . 9 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
65adantll 713 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
7 climrescn.f . . . . . . . . . 10 (𝜑𝐹 Fn 𝑍)
87fndmd 6659 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝑍)
98ad2antrr 725 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → dom 𝐹 = 𝑍)
106, 9eleqtrrd 2832 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘 ∈ dom 𝐹)
1110adantlr 714 . . . . . 6 ((((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘 ∈ dom 𝐹)
12 rspa 3242 . . . . . . . . 9 ((∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
1312adantll 713 . . . . . . . 8 (((𝑖𝑍 ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
1413simpld 494 . . . . . . 7 (((𝑖𝑍 ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) ∈ ℂ)
1514adantlll 717 . . . . . 6 ((((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) ∈ ℂ)
1611, 15jca 511 . . . . 5 ((((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ))
173, 16ralrimia 3252 . . . 4 (((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) → ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ))
18 fnfun 6654 . . . . . 6 (𝐹 Fn 𝑍 → Fun 𝐹)
19 ffvresb 7135 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ)))
207, 18, 193syl 18 . . . . 5 (𝜑 → ((𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ)))
2120ad2antrr 725 . . . 4 (((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) → ((𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ)))
2217, 21mpbird 257 . . 3 (((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) → (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ)
23 breq2 5152 . . . . . . 7 (𝑥 = 1 → ((abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥 ↔ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
2423anbi2d 629 . . . . . 6 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
2524rexralbidv 3217 . . . . 5 (𝑥 = 1 → (∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥) ↔ ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
26 climrescn.c . . . . . . . 8 (𝜑𝐹 ∈ dom ⇝ )
27 climdm 15530 . . . . . . . 8 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
2826, 27sylib 217 . . . . . . 7 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
29 eqidd 2729 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
3026, 29clim 15470 . . . . . . 7 (𝜑 → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ (( ⇝ ‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥))))
3128, 30mpbid 231 . . . . . 6 (𝜑 → (( ⇝ ‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥)))
3231simprd 495 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥))
33 1rp 13010 . . . . . 6 1 ∈ ℝ+
3433a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ+)
3525, 32, 34rspcdva 3610 . . . 4 (𝜑 → ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
36 climrescn.m . . . . 5 (𝜑𝑀 ∈ ℤ)
374rexuz3 15327 . . . . 5 (𝑀 ∈ ℤ → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1) ↔ ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
3836, 37syl 17 . . . 4 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1) ↔ ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
3935, 38mpbird 257 . . 3 (𝜑 → ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
4022, 39reximddv3 44517 . 2 (𝜑 → ∃𝑖𝑍 (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ)
41 fveq2 6897 . . . . 5 (𝑗 = 𝑖 → (ℤ𝑗) = (ℤ𝑖))
4241reseq2d 5985 . . . 4 (𝑗 = 𝑖 → (𝐹 ↾ (ℤ𝑗)) = (𝐹 ↾ (ℤ𝑖)))
4342, 41feq12d 6710 . . 3 (𝑗 = 𝑖 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ ↔ (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ))
4443cbvrexvw 3232 . 2 (∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ ↔ ∃𝑖𝑍 (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ)
4540, 44sylibr 233 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3058  wrex 3067   class class class wbr 5148  dom cdm 5678  cres 5680  Fun wfun 6542   Fn wfn 6543  wf 6544  cfv 6548  (class class class)co 7420  cc 11136  1c1 11139   < clt 11278  cmin 11474  cz 12588  cuz 12852  +crp 13006  abscabs 15213  cli 15460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464
This theorem is referenced by:  climxlim2  45234
  Copyright terms: Public domain W3C validator
OSZAR »