MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf 29838
Description: 𝐹 is a function from the nonempty closed walks into the closed walks as word in a simple pseudograph. (Contributed by AV, 23-May-2022.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkf (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐
Allowed substitution hints:   𝐶(𝑤)   𝐹(𝑤,𝑐)

Proof of Theorem clwlkclwwlkf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 eqid 2728 . . . . 5 (1st𝑐) = (1st𝑐)
3 eqid 2728 . . . . 5 (2nd𝑐) = (2nd𝑐)
41, 2, 3clwlkclwwlkflem 29834 . . . 4 (𝑐𝐶 → ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ))
5 isclwlk 29607 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) ↔ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))))
6 fvex 6915 . . . . . . . . 9 (1st𝑐) ∈ V
7 breq1 5155 . . . . . . . . 9 (𝑓 = (1st𝑐) → (𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ (1st𝑐)(ClWalks‘𝐺)(2nd𝑐)))
86, 7spcev 3595 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
95, 8sylbir 234 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1093adant3 1129 . . . . . 6 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1110adantl 480 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
12 simpl 481 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 𝐺 ∈ USPGraph)
13 eqid 2728 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
1413wlkpwrd 29451 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
15143ad2ant1 1130 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
1615adantl 480 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
17 elnnnn0c 12555 . . . . . . . . . 10 ((♯‘(1st𝑐)) ∈ ℕ ↔ ((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))))
18 nn0re 12519 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℕ0 → (♯‘(1st𝑐)) ∈ ℝ)
19 1e2m1 12377 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
2019breq1i 5159 . . . . . . . . . . . . . . . 16 (1 ≤ (♯‘(1st𝑐)) ↔ (2 − 1) ≤ (♯‘(1st𝑐)))
2120biimpi 215 . . . . . . . . . . . . . . 15 (1 ≤ (♯‘(1st𝑐)) → (2 − 1) ≤ (♯‘(1st𝑐)))
22 2re 12324 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
23 1re 11252 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
24 lesubadd 11724 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘(1st𝑐)) ∈ ℝ) → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2522, 23, 24mp3an12 1447 . . . . . . . . . . . . . . 15 ((♯‘(1st𝑐)) ∈ ℝ → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2621, 25imbitrid 243 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℝ → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2718, 26syl 17 . . . . . . . . . . . . 13 ((♯‘(1st𝑐)) ∈ ℕ0 → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2827adantl 480 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
29 wlklenvp1 29452 . . . . . . . . . . . . . 14 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3029adantr 479 . . . . . . . . . . . . 13 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3130breq2d 5164 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (2 ≤ (♯‘(2nd𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
3228, 31sylibrd 258 . . . . . . . . . . 11 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ (♯‘(2nd𝑐))))
3332expimpd 452 . . . . . . . . . 10 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))) → 2 ≤ (♯‘(2nd𝑐))))
3417, 33biimtrid 241 . . . . . . . . 9 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐))))
3534a1d 25 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐)))))
36353imp 1108 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → 2 ≤ (♯‘(2nd𝑐)))
3736adantl 480 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 2 ≤ (♯‘(2nd𝑐)))
38 eqid 2728 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
3913, 38clwlkclwwlk 29832 . . . . . 6 ((𝐺 ∈ USPGraph ∧ (2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘(2nd𝑐))) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4012, 16, 37, 39syl3anc 1368 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4111, 40mpbid 231 . . . 4 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
424, 41sylan2 591 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
4342simprd 494 . 2 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))
44 clwlkclwwlkf.f . 2 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
4543, 44fmptd 7129 1 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {crab 3430   class class class wbr 5152  cmpt 5235  wf 6549  cfv 6553  (class class class)co 7426  1st c1st 7997  2nd c2nd 7998  cr 11145  0cc0 11146  1c1 11147   + caddc 11149  cle 11287  cmin 11482  cn 12250  2c2 12305  0cn0 12510  chash 14329  Word cword 14504  lastSclsw 14552   prefix cpfx 14660  Vtxcvtx 28829  iEdgciedg 28830  USPGraphcuspgr 28981  Walkscwlks 29430  ClWalkscclwlks 29604  ClWWalkscclwwlk 29811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-lsw 14553  df-substr 14631  df-pfx 14661  df-edg 28881  df-uhgr 28891  df-upgr 28915  df-uspgr 28983  df-wlks 29433  df-clwlks 29605  df-clwwlk 29812
This theorem is referenced by:  clwlkclwwlkfo  29839  clwlkclwwlkf1  29840
  Copyright terms: Public domain W3C validator
OSZAR »