MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coelem Structured version   Visualization version   GIF version

Theorem coelem 26176
Description: Lemma for properties of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
coelem (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))))
Distinct variable groups:   𝑧,𝑘   𝑛,𝐹   𝑆,𝑛   𝑘,𝑛,𝑧,𝐹
Allowed substitution hints:   𝑆(𝑧,𝑘)

Proof of Theorem coelem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 coeval 26173 . . 3 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
2 coeeu 26175 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
3 riotacl2 7387 . . . 4 (∃!𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) ∈ {𝑎 ∈ (ℂ ↑m0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))})
42, 3syl 17 . . 3 (𝐹 ∈ (Poly‘𝑆) → (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) ∈ {𝑎 ∈ (ℂ ↑m0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))})
51, 4eqeltrd 2825 . 2 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) ∈ {𝑎 ∈ (ℂ ↑m0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))})
6 imaeq1 6051 . . . . . 6 (𝑎 = (coeff‘𝐹) → (𝑎 “ (ℤ‘(𝑛 + 1))) = ((coeff‘𝐹) “ (ℤ‘(𝑛 + 1))))
76eqeq1d 2727 . . . . 5 (𝑎 = (coeff‘𝐹) → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ ((coeff‘𝐹) “ (ℤ‘(𝑛 + 1))) = {0}))
8 fveq1 6889 . . . . . . . . 9 (𝑎 = (coeff‘𝐹) → (𝑎𝑘) = ((coeff‘𝐹)‘𝑘))
98oveq1d 7429 . . . . . . . 8 (𝑎 = (coeff‘𝐹) → ((𝑎𝑘) · (𝑧𝑘)) = (((coeff‘𝐹)‘𝑘) · (𝑧𝑘)))
109sumeq2sdv 15680 . . . . . . 7 (𝑎 = (coeff‘𝐹) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)))
1110mpteq2dv 5243 . . . . . 6 (𝑎 = (coeff‘𝐹) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))
1211eqeq2d 2736 . . . . 5 (𝑎 = (coeff‘𝐹) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘)))))
137, 12anbi12d 630 . . . 4 (𝑎 = (coeff‘𝐹) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (((coeff‘𝐹) “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))))
1413rexbidv 3169 . . 3 (𝑎 = (coeff‘𝐹) → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))))
1514elrab 3674 . 2 ((coeff‘𝐹) ∈ {𝑎 ∈ (ℂ ↑m0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))} ↔ ((coeff‘𝐹) ∈ (ℂ ↑m0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))))
165, 15sylib 217 1 (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3060  ∃!wreu 3362  {crab 3419  {csn 4622  cmpt 5224  cima 5673  cfv 6541  crio 7369  (class class class)co 7414  m cmap 8841  cc 11134  0cc0 11136  1c1 11137   + caddc 11139   · cmul 11141  0cn0 12500  cuz 12850  ...cfz 13514  cexp 14056  Σcsu 15662  Polycply 26134  coeffccoe 26136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-pm 8844  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-fz 13515  df-fzo 13658  df-fl 13787  df-seq 13997  df-exp 14057  df-hash 14320  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-clim 15462  df-rlim 15463  df-sum 15663  df-0p 25615  df-ply 26138  df-coe 26140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »