MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalglem1 Structured version   Visualization version   GIF version

Theorem colinearalglem1 28710
Description: Lemma for colinearalg 28714. Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
colinearalglem1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))

Proof of Theorem colinearalglem1
StepHypRef Expression
1 simpl2 1190 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐵 ∈ ℂ)
2 simpl1 1189 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐴 ∈ ℂ)
31, 2subcld 11595 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐵𝐴) ∈ ℂ)
4 simpr3 1194 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐹 ∈ ℂ)
5 simpr1 1192 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐷 ∈ ℂ)
63, 4, 5subdid 11694 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · (𝐹𝐷)) = (((𝐵𝐴) · 𝐹) − ((𝐵𝐴) · 𝐷)))
71, 2, 4subdird 11695 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · 𝐹) = ((𝐵 · 𝐹) − (𝐴 · 𝐹)))
81, 2, 5subdird 11695 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · 𝐷) = ((𝐵 · 𝐷) − (𝐴 · 𝐷)))
97, 8oveq12d 7432 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · 𝐹) − ((𝐵𝐴) · 𝐷)) = (((𝐵 · 𝐹) − (𝐴 · 𝐹)) − ((𝐵 · 𝐷) − (𝐴 · 𝐷))))
10 simp2 1135 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
11 simp3 1136 . . . . . . . 8 ((𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ) → 𝐹 ∈ ℂ)
12 mulcl 11216 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐹 ∈ ℂ) → (𝐵 · 𝐹) ∈ ℂ)
1310, 11, 12syl2an 595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐵 · 𝐹) ∈ ℂ)
14 simp1 1134 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
15 mulcl 11216 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐹 ∈ ℂ) → (𝐴 · 𝐹) ∈ ℂ)
1614, 11, 15syl2an 595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐴 · 𝐹) ∈ ℂ)
1713, 16subcld 11595 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵 · 𝐹) − (𝐴 · 𝐹)) ∈ ℂ)
18 simp1 1134 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ) → 𝐷 ∈ ℂ)
19 mulcl 11216 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 · 𝐷) ∈ ℂ)
2010, 18, 19syl2an 595 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
21 mulcl 11216 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
2214, 18, 21syl2an 595 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
2317, 20, 22subsub3d 11625 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵 · 𝐹) − (𝐴 · 𝐹)) − ((𝐵 · 𝐷) − (𝐴 · 𝐷))) = ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) + (𝐴 · 𝐷)) − (𝐵 · 𝐷)))
2417, 22, 20addsubd 11616 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) + (𝐴 · 𝐷)) − (𝐵 · 𝐷)) = ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) + (𝐴 · 𝐷)))
259, 23, 243eqtrrd 2773 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐵𝐴) · 𝐹) − ((𝐵𝐴) · 𝐷)))
2613, 16, 20subsub4d 11626 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) = ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))))
2726oveq1d 7429 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − (𝐴 · 𝐹)) − (𝐵 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)))
286, 25, 273eqtr2d 2774 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵𝐴) · (𝐹𝐷)) = (((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)))
29 simpr2 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐸 ∈ ℂ)
3029, 5subcld 11595 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐸𝐷) ∈ ℂ)
31 simpl3 1191 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → 𝐶 ∈ ℂ)
3231, 2subcld 11595 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐶𝐴) ∈ ℂ)
3330, 32mulcomd 11259 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐸𝐷) · (𝐶𝐴)) = ((𝐶𝐴) · (𝐸𝐷)))
3432, 29, 5subdid 11694 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶𝐴) · (𝐸𝐷)) = (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)))
3531, 2, 29subdird 11695 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶𝐴) · 𝐸) = ((𝐶 · 𝐸) − (𝐴 · 𝐸)))
3631, 2, 5subdird 11695 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶𝐴) · 𝐷) = ((𝐶 · 𝐷) − (𝐴 · 𝐷)))
3735, 36oveq12d 7432 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)) = (((𝐶 · 𝐸) − (𝐴 · 𝐸)) − ((𝐶 · 𝐷) − (𝐴 · 𝐷))))
38 simp3 1136 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
39 simp2 1135 . . . . . . . . 9 ((𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ) → 𝐸 ∈ ℂ)
40 mulcl 11216 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → (𝐶 · 𝐸) ∈ ℂ)
4138, 39, 40syl2an 595 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐶 · 𝐸) ∈ ℂ)
42 mulcl 11216 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐸 ∈ ℂ) → (𝐴 · 𝐸) ∈ ℂ)
4314, 39, 42syl2an 595 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐴 · 𝐸) ∈ ℂ)
4441, 43subcld 11595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶 · 𝐸) − (𝐴 · 𝐸)) ∈ ℂ)
45 mulcl 11216 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ)
4638, 18, 45syl2an 595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (𝐶 · 𝐷) ∈ ℂ)
4744, 46, 22subsub3d 11625 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶 · 𝐸) − (𝐴 · 𝐸)) − ((𝐶 · 𝐷) − (𝐴 · 𝐷))) = ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) + (𝐴 · 𝐷)) − (𝐶 · 𝐷)))
4844, 22, 46addsubd 11616 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) + (𝐴 · 𝐷)) − (𝐶 · 𝐷)) = ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) + (𝐴 · 𝐷)))
4937, 47, 483eqtrrd 2773 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)))
5041, 43, 46subsub4d 11626 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))))
5150oveq1d 7429 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐶 · 𝐸) − (𝐴 · 𝐸)) − (𝐶 · 𝐷)) + (𝐴 · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)))
5249, 51eqtr3d 2770 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐶𝐴) · 𝐸) − ((𝐶𝐴) · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)))
5333, 34, 523eqtrd 2772 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐸𝐷) · (𝐶𝐴)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)))
5428, 53eqeq12d 2744 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ (((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷))))
5516, 20addcld 11257 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐴 · 𝐹) + (𝐵 · 𝐷)) ∈ ℂ)
5613, 55subcld 11595 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) ∈ ℂ)
5743, 46addcld 11257 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐴 · 𝐸) + (𝐶 · 𝐷)) ∈ ℂ)
5841, 57subcld 11595 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) ∈ ℂ)
5956, 58, 22addcan2d 11442 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → ((((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) + (𝐴 · 𝐷)) = (((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))) + (𝐴 · 𝐷)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))
6054, 59bitrd 279 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵𝐴) · (𝐹𝐷)) = ((𝐸𝐷) · (𝐶𝐴)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  (class class class)co 7414  cc 11130   + caddc 11135   · cmul 11137  cmin 11468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-ltxr 11277  df-sub 11470
This theorem is referenced by:  colinearalglem2  28711
  Copyright terms: Public domain W3C validator
OSZAR »