![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplgr2vpr | Structured version Visualization version GIF version |
Description: An undirected hypergraph with two (different) vertices is complete iff there is an edge between these two vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.) (Revised by AV, 3-Nov-2020.) |
Ref | Expression |
---|---|
cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cplgr2v.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
cplgr2vpr | ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ ComplGraph ↔ {𝐴, 𝐵} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵}) → 𝐺 ∈ UHGraph) | |
2 | fveq2 6902 | . . . . 5 ⊢ (𝑉 = {𝐴, 𝐵} → (♯‘𝑉) = (♯‘{𝐴, 𝐵})) | |
3 | 2 | adantl 480 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵}) → (♯‘𝑉) = (♯‘{𝐴, 𝐵})) |
4 | elex 3492 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ V) | |
5 | elex 3492 | . . . . 5 ⊢ (𝐵 ∈ 𝑌 → 𝐵 ∈ V) | |
6 | id 22 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
7 | hashprb 14396 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) ↔ (♯‘{𝐴, 𝐵}) = 2) | |
8 | 7 | biimpi 215 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → (♯‘{𝐴, 𝐵}) = 2) |
9 | 4, 5, 6, 8 | syl3an 1157 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (♯‘{𝐴, 𝐵}) = 2) |
10 | 3, 9 | sylan9eqr 2790 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (♯‘𝑉) = 2) |
11 | cplgr0v.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | cplgr2v.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | 11, 12 | cplgr2v 29265 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝐺 ∈ ComplGraph ↔ 𝑉 ∈ 𝐸)) |
14 | 1, 10, 13 | syl2an2 684 | . 2 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ ComplGraph ↔ 𝑉 ∈ 𝐸)) |
15 | simprr 771 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → 𝑉 = {𝐴, 𝐵}) | |
16 | 15 | eleq1d 2814 | . 2 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝑉 ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸)) |
17 | 14, 16 | bitrd 278 | 1 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝐺 ∈ UHGraph ∧ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ ComplGraph ↔ {𝐴, 𝐵} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 Vcvv 3473 {cpr 4634 ‘cfv 6553 2c2 12305 ♯chash 14329 Vtxcvtx 28829 Edgcedg 28880 UHGraphcuhgr 28889 ComplGraphccplgr 29242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-oadd 8497 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-hash 14330 df-edg 28881 df-uhgr 28891 df-nbgr 29166 df-uvtx 29219 df-cplgr 29244 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |