MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsiun Structured version   Visualization version   GIF version

Theorem cshwsiun 17069
Description: The set of (different!) words resulting by cyclically shifting a given word is an indexed union. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Proof shortened by AV, 8-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshwsiun (𝑊 ∈ Word 𝑉𝑀 = 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshwsiun
StepHypRef Expression
1 df-rab 3430 . . 3 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)}
2 eqcom 2735 . . . . . . . . 9 ((𝑊 cyclShift 𝑛) = 𝑤𝑤 = (𝑊 cyclShift 𝑛))
32biimpi 215 . . . . . . . 8 ((𝑊 cyclShift 𝑛) = 𝑤𝑤 = (𝑊 cyclShift 𝑛))
43reximi 3081 . . . . . . 7 (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 → ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛))
54adantl 481 . . . . . 6 ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) → ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛))
6 cshwcl 14781 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑛) ∈ Word 𝑉)
76adantr 480 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑛) ∈ Word 𝑉)
8 eleq1 2817 . . . . . . . . 9 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ Word 𝑉 ↔ (𝑊 cyclShift 𝑛) ∈ Word 𝑉))
97, 8syl5ibrcom 246 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))) → (𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ Word 𝑉))
109rexlimdva 3152 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ Word 𝑉))
11 eqcom 2735 . . . . . . . . 9 (𝑤 = (𝑊 cyclShift 𝑛) ↔ (𝑊 cyclShift 𝑛) = 𝑤)
1211biimpi 215 . . . . . . . 8 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑊 cyclShift 𝑛) = 𝑤)
1312reximi 3081 . . . . . . 7 (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) → ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
1410, 13jca2 513 . . . . . 6 (𝑊 ∈ Word 𝑉 → (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)))
155, 14impbid2 225 . . . . 5 (𝑊 ∈ Word 𝑉 → ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)))
16 velsn 4645 . . . . . . . 8 (𝑤 ∈ {(𝑊 cyclShift 𝑛)} ↔ 𝑤 = (𝑊 cyclShift 𝑛))
1716bicomi 223 . . . . . . 7 (𝑤 = (𝑊 cyclShift 𝑛) ↔ 𝑤 ∈ {(𝑊 cyclShift 𝑛)})
1817a1i 11 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑤 = (𝑊 cyclShift 𝑛) ↔ 𝑤 ∈ {(𝑊 cyclShift 𝑛)}))
1918rexbidv 3175 . . . . 5 (𝑊 ∈ Word 𝑉 → (∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}))
2015, 19bitrd 279 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}))
2120abbidv 2797 . . 3 (𝑊 ∈ Word 𝑉 → {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}})
221, 21eqtrid 2780 . 2 (𝑊 ∈ Word 𝑉 → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}})
23 cshwrepswhash1.m . 2 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
24 df-iun 4998 . 2 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 ∈ {(𝑊 cyclShift 𝑛)}}
2522, 23, 243eqtr4g 2793 1 (𝑊 ∈ Word 𝑉𝑀 = 𝑛 ∈ (0..^(♯‘𝑊)){(𝑊 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {cab 2705  wrex 3067  {crab 3429  {csn 4629   ciun 4996  cfv 6548  (class class class)co 7420  0cc0 11139  ..^cfzo 13660  chash 14322  Word cword 14497   cyclShift ccsh 14771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-hash 14323  df-word 14498  df-concat 14554  df-substr 14624  df-pfx 14654  df-csh 14772
This theorem is referenced by:  cshwsex  17070  cshwshashnsame  17073
  Copyright terms: Public domain W3C validator
OSZAR »