Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem13 Structured version   Visualization version   GIF version

Theorem cvmliftlem13 34901
Description: Lemma for cvmlift 34904. The initial value of 𝐾 is 𝑃 because 𝑄(1) is a subset of 𝐾 which takes value 𝑃 at 0. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
Assertion
Ref Expression
cvmliftlem13 (𝜑 → (𝐾‘0) = 𝑃)
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem13
StepHypRef Expression
1 cvmliftlem.1 . . . . . . 7 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . . . 7 𝐵 = 𝐶
3 cvmliftlem.x . . . . . . 7 𝑋 = 𝐽
4 cvmliftlem.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . . . 7 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . . . 7 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . . . 7 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . . . 7 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . . . 7 𝐿 = (topGen‘ran (,))
12 cvmliftlem.q . . . . . . 7 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
13 cvmliftlem.k . . . . . . 7 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem11 34900 . . . . . 6 (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = 𝐺))
1514simpld 494 . . . . 5 (𝜑𝐾 ∈ (II Cn 𝐶))
16 iiuni 24795 . . . . . 6 (0[,]1) = II
1716, 2cnf 23144 . . . . 5 (𝐾 ∈ (II Cn 𝐶) → 𝐾:(0[,]1)⟶𝐵)
1815, 17syl 17 . . . 4 (𝜑𝐾:(0[,]1)⟶𝐵)
1918ffund 6721 . . 3 (𝜑 → Fun 𝐾)
20 nnuz 12890 . . . . . . 7 ℕ = (ℤ‘1)
218, 20eleqtrdi 2839 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘1))
22 eluzfz1 13535 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
2321, 22syl 17 . . . . 5 (𝜑 → 1 ∈ (1...𝑁))
24 fveq2 6892 . . . . . 6 (𝑘 = 1 → (𝑄𝑘) = (𝑄‘1))
2524ssiun2s 5046 . . . . 5 (1 ∈ (1...𝑁) → (𝑄‘1) ⊆ 𝑘 ∈ (1...𝑁)(𝑄𝑘))
2623, 25syl 17 . . . 4 (𝜑 → (𝑄‘1) ⊆ 𝑘 ∈ (1...𝑁)(𝑄𝑘))
2726, 13sseqtrrdi 4030 . . 3 (𝜑 → (𝑄‘1) ⊆ 𝐾)
28 0xr 11286 . . . . . . 7 0 ∈ ℝ*
2928a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
308nnrecred 12288 . . . . . . 7 (𝜑 → (1 / 𝑁) ∈ ℝ)
3130rexrd 11289 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ*)
32 1red 11240 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
33 0le1 11762 . . . . . . . 8 0 ≤ 1
3433a1i 11 . . . . . . 7 (𝜑 → 0 ≤ 1)
358nnred 12252 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
368nngt0d 12286 . . . . . . 7 (𝜑 → 0 < 𝑁)
37 divge0 12108 . . . . . . 7 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (1 / 𝑁))
3832, 34, 35, 36, 37syl22anc 838 . . . . . 6 (𝜑 → 0 ≤ (1 / 𝑁))
39 lbicc2 13468 . . . . . 6 ((0 ∈ ℝ* ∧ (1 / 𝑁) ∈ ℝ* ∧ 0 ≤ (1 / 𝑁)) → 0 ∈ (0[,](1 / 𝑁)))
4029, 31, 38, 39syl3anc 1369 . . . . 5 (𝜑 → 0 ∈ (0[,](1 / 𝑁)))
41 1m1e0 12309 . . . . . . . 8 (1 − 1) = 0
4241oveq1i 7425 . . . . . . 7 ((1 − 1) / 𝑁) = (0 / 𝑁)
438nncnd 12253 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
448nnne0d 12287 . . . . . . . 8 (𝜑𝑁 ≠ 0)
4543, 44div0d 12014 . . . . . . 7 (𝜑 → (0 / 𝑁) = 0)
4642, 45eqtrid 2780 . . . . . 6 (𝜑 → ((1 − 1) / 𝑁) = 0)
4746oveq1d 7430 . . . . 5 (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁)))
4840, 47eleqtrrd 2832 . . . 4 (𝜑 → 0 ∈ (((1 − 1) / 𝑁)[,](1 / 𝑁)))
49 eqid 2728 . . . . . . . 8 (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (((1 − 1) / 𝑁)[,](1 / 𝑁))
50 simpr 484 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
511, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 49cvmliftlem7 34896 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((1 − 1) / 𝑁))}))
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 49, 50, 51cvmliftlem6 34895 . . . . . . 7 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
5323, 52mpdan 686 . . . . . 6 (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
5453simpld 494 . . . . 5 (𝜑 → (𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵)
5554fdmd 6728 . . . 4 (𝜑 → dom (𝑄‘1) = (((1 − 1) / 𝑁)[,](1 / 𝑁)))
5648, 55eleqtrrd 2832 . . 3 (𝜑 → 0 ∈ dom (𝑄‘1))
57 funssfv 6913 . . 3 ((Fun 𝐾 ∧ (𝑄‘1) ⊆ 𝐾 ∧ 0 ∈ dom (𝑄‘1)) → (𝐾‘0) = ((𝑄‘1)‘0))
5819, 27, 56, 57syl3anc 1369 . 2 (𝜑 → (𝐾‘0) = ((𝑄‘1)‘0))
591, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem9 34898 . . . 4 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)))
6023, 59mpdan 686 . . 3 (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)))
6146fveq2d 6896 . . 3 (𝜑 → ((𝑄‘1)‘((1 − 1) / 𝑁)) = ((𝑄‘1)‘0))
6241fveq2i 6895 . . . . . 6 (𝑄‘(1 − 1)) = (𝑄‘0)
631, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem4 34893 . . . . . 6 (𝑄‘0) = {⟨0, 𝑃⟩}
6462, 63eqtri 2756 . . . . 5 (𝑄‘(1 − 1)) = {⟨0, 𝑃⟩}
6564a1i 11 . . . 4 (𝜑 → (𝑄‘(1 − 1)) = {⟨0, 𝑃⟩})
6665, 46fveq12d 6899 . . 3 (𝜑 → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) = ({⟨0, 𝑃⟩}‘0))
6760, 61, 663eqtr3d 2776 . 2 (𝜑 → ((𝑄‘1)‘0) = ({⟨0, 𝑃⟩}‘0))
68 0nn0 12512 . . 3 0 ∈ ℕ0
69 fvsng 7184 . . 3 ((0 ∈ ℕ0𝑃𝐵) → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7068, 6, 69sylancr 586 . 2 (𝜑 → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7158, 67, 703eqtrd 2772 1 (𝜑 → (𝐾‘0) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  {crab 3428  Vcvv 3470  cdif 3942  cun 3943  cin 3944  wss 3945  c0 4319  𝒫 cpw 4599  {csn 4625  cop 4631   cuni 4904   ciun 4992   class class class wbr 5143  cmpt 5226   I cid 5570   × cxp 5671  ccnv 5672  dom cdm 5673  ran crn 5674  cres 5675  cima 5676  ccom 5677  Fun wfun 6537  wf 6539  cfv 6543  crio 7370  (class class class)co 7415  cmpo 7417  1st c1st 7986  2nd c2nd 7987  cr 11132  0cc0 11133  1c1 11134  *cxr 11272   < clt 11273  cle 11274  cmin 11469   / cdiv 11896  cn 12237  0cn0 12497  cuz 12847  (,)cioo 13351  [,]cicc 13354  ...cfz 13511  seqcseq 13993  t crest 17396  topGenctg 17413   Cn ccn 23122  Homeochmeo 23651  IIcii 24789   CovMap ccvm 34860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fi 9429  df-sup 9460  df-inf 9461  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ioo 13355  df-icc 13358  df-fz 13512  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-rest 17398  df-topgen 17419  df-psmet 21265  df-xmet 21266  df-met 21267  df-bl 21268  df-mopn 21269  df-top 22790  df-topon 22807  df-bases 22843  df-cld 22917  df-cn 23125  df-hmeo 23653  df-ii 24791  df-cvm 34861
This theorem is referenced by:  cvmliftlem14  34902
  Copyright terms: Public domain W3C validator
OSZAR »