Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnbgrss2 Structured version   Visualization version   GIF version

Theorem dfnbgrss2 47257
Description: Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfvopnbgr2.v 𝑉 = (Vtx‘𝐺)
dfvopnbgr2.e 𝐸 = (Edg‘𝐺)
dfvopnbgr2.u 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
dfsclnbgr6.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
Assertion
Ref Expression
dfnbgrss2 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈𝑈𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑛,𝐸   𝑛,𝐺
Allowed substitution hints:   𝑆(𝑒,𝑛)   𝑈(𝑒,𝑛)

Proof of Theorem dfnbgrss2
StepHypRef Expression
1 dfvopnbgr2.v . . . 4 𝑉 = (Vtx‘𝐺)
2 dfvopnbgr2.e . . . 4 𝐸 = (Edg‘𝐺)
3 dfvopnbgr2.u . . . 4 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
41, 2, 3dfnbgr6 47255 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑈 ∖ {𝑁}))
5 difss 4124 . . 3 (𝑈 ∖ {𝑁}) ⊆ 𝑈
64, 5eqsstrdi 4027 . 2 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) ⊆ 𝑈)
7 ssun1 4166 . . 3 𝑈 ⊆ (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒})
8 dfsclnbgr6.s . . . 4 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
91, 2, 3, 8dfsclnbgr6 47256 . . 3 (𝑁𝑉𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
107, 9sseqtrrid 4026 . 2 (𝑁𝑉𝑈𝑆)
111, 8, 2dfnbgrss 47250 . . 3 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
1211simprd 494 . 2 (𝑁𝑉𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))
136, 10, 123jca 1125 1 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈𝑈𝑆𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wrex 3060  {crab 3419  cdif 3936  cun 3937  wss 3939  {csn 4624  {cpr 4626  cfv 6543  (class class class)co 7416  Vtxcvtx 28853  Edgcedg 28904   NeighbVtx cnbgr 29189   ClNeighbVtx cclnbgr 47221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-nbgr 29190  df-clnbgr 47222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »