Proof of Theorem dfsclnbgr6
Step | Hyp | Ref
| Expression |
1 | | simpr 483 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → 𝑛 ∈ 𝑒) |
2 | 1 | anim1i 613 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∧ 𝑛 = 𝑁) → (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) |
3 | 2 | olcd 872 |
. . . . . . . . 9
⊢ (((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∧ 𝑛 = 𝑁) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁))) |
4 | 3 | expcom 412 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
5 | | 3anass 1092 |
. . . . . . . . . . . 12
⊢ ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
6 | 5 | biimpri 227 |
. . . . . . . . . . 11
⊢ ((𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) → (𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) |
7 | 6 | orcd 871 |
. . . . . . . . . 10
⊢ ((𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) → ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))) |
8 | 7 | orcd 871 |
. . . . . . . . 9
⊢ ((𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁))) |
9 | 8 | ex 411 |
. . . . . . . 8
⊢ (𝑛 ≠ 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
10 | 4, 9 | pm2.61ine 3014 |
. . . . . . 7
⊢ ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁))) |
11 | | 3simpc 1147 |
. . . . . . . . . 10
⊢ ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) |
12 | 11 | a1i 11 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑉 → ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
13 | | vsnid 4667 |
. . . . . . . . . . . . . . . 16
⊢ 𝑛 ∈ {𝑛} |
14 | 13 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = {𝑛} → 𝑛 ∈ {𝑛}) |
15 | | eleq2 2814 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = {𝑛} → (𝑛 ∈ 𝑒 ↔ 𝑛 ∈ {𝑛})) |
16 | 14, 15 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = {𝑛} → 𝑛 ∈ 𝑒) |
17 | 16 | adantl 480 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) → 𝑛 ∈ 𝑒) |
18 | | eleq1 2813 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝑒 ↔ 𝑁 ∈ 𝑒)) |
19 | 18 | bicomd 222 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑁 → (𝑁 ∈ 𝑒 ↔ 𝑛 ∈ 𝑒)) |
20 | 19 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) → (𝑁 ∈ 𝑒 ↔ 𝑛 ∈ 𝑒)) |
21 | 17, 20 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) → 𝑁 ∈ 𝑒) |
22 | 21 | adantl 480 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) → 𝑁 ∈ 𝑒) |
23 | 17 | adantl 480 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) → 𝑛 ∈ 𝑒) |
24 | 22, 23 | jca 510 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) |
25 | 24 | ex 411 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑉 → ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
26 | 12, 25 | jaod 857 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑉 → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
27 | 18 | biimpac 477 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) → 𝑁 ∈ 𝑒) |
28 | | simpl 481 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) → 𝑛 ∈ 𝑒) |
29 | 27, 28 | jca 510 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) |
30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑉 → ((𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
31 | 26, 30 | jaod 857 |
. . . . . . 7
⊢ (𝑁 ∈ 𝑉 → ((((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
32 | 10, 31 | impbid2 225 |
. . . . . 6
⊢ (𝑁 ∈ 𝑉 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
33 | 32 | rexbidv 3168 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ ∃𝑒 ∈ 𝐸 (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
34 | | r19.43 3111 |
. . . . . 6
⊢
(∃𝑒 ∈
𝐸 (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) ↔ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ ∃𝑒 ∈ 𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁))) |
35 | 34 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) ↔ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ ∃𝑒 ∈ 𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
36 | | r19.41v 3178 |
. . . . . . . 8
⊢
(∃𝑒 ∈
𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) ↔ (∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) |
37 | 36 | biancomi 461 |
. . . . . . 7
⊢
(∃𝑒 ∈
𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) ↔ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)) |
38 | 37 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) ↔ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒))) |
39 | 38 | orbi2d 913 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → ((∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ ∃𝑒 ∈ 𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) ↔ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)))) |
40 | 33, 35, 39 | 3bitrd 304 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)))) |
41 | 40 | rabbidv 3426 |
. . 3
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} = {𝑛 ∈ 𝑉 ∣ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒))}) |
42 | | unrab 4304 |
. . . 4
⊢ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ 𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)}) = {𝑛 ∈ 𝑉 ∣ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒))} |
43 | | rabsneq 4648 |
. . . . . 6
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒} = {𝑛 ∈ 𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)}) |
44 | 43 | eqcomd 2731 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ 𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)} = {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒}) |
45 | 44 | uneq2d 4160 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ 𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)}) = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |
46 | 42, 45 | eqtr3id 2779 |
. . 3
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ 𝑉 ∣ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒))} = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |
47 | 41, 46 | eqtrd 2765 |
. 2
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |
48 | | dfvopnbgr2.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
49 | | dfsclnbgr6.s |
. . 3
⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} |
50 | | dfvopnbgr2.e |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
51 | 48, 49, 50 | dfsclnbgr2 47318 |
. 2
⊢ (𝑁 ∈ 𝑉 → 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
52 | | dfvopnbgr2.u |
. . . 4
⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
53 | 48, 50, 52 | dfvopnbgr2 47325 |
. . 3
⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) |
54 | 53 | uneq1d 4159 |
. 2
⊢ (𝑁 ∈ 𝑉 → (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒}) = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |
55 | 47, 51, 54 | 3eqtr4d 2775 |
1
⊢ (𝑁 ∈ 𝑉 → 𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |