Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem6 Structured version   Visualization version   GIF version

Theorem dihglblem6 40807
Description: Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
dihglblem6.b 𝐵 = (Base‘𝐾)
dihglblem6.l = (le‘𝐾)
dihglblem6.m = (meet‘𝐾)
dihglblem6.a 𝐴 = (Atoms‘𝐾)
dihglblem6.g 𝐺 = (glb‘𝐾)
dihglblem6.h 𝐻 = (LHyp‘𝐾)
dihglblem6.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglblem6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihglblem6.s 𝑃 = (LSubSp‘𝑈)
dihglblem6.d 𝐷 = (LSAtoms‘𝑈)
Assertion
Ref Expression
dihglblem6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,   𝑥,   𝑥,𝐵   𝑥,𝐷   𝑥,𝐺   𝑥,𝐻   𝑥,𝐼   𝑥,𝐾   𝑥,𝑃   𝑥,𝑆   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝑈(𝑥)

Proof of Theorem dihglblem6
Dummy variables 𝑣 𝑢 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglblem6.b . . . 4 𝐵 = (Base‘𝐾)
2 dihglblem6.l . . . 4 = (le‘𝐾)
3 eqid 2728 . . . 4 (meet‘𝐾) = (meet‘𝐾)
4 dihglblem6.g . . . 4 𝐺 = (glb‘𝐾)
5 dihglblem6.h . . . 4 𝐻 = (LHyp‘𝐾)
6 eqid 2728 . . . 4 {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣(meet‘𝐾)𝑊)} = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣(meet‘𝐾)𝑊)}
7 eqid 2728 . . . 4 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
8 dihglblem6.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8dihglblem4 40764 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥))
10 fal 1548 . . . . 5 ¬ ⊥
11 dihglblem6.s . . . . . . . 8 𝑃 = (LSubSp‘𝑈)
12 dihglblem6.d . . . . . . . 8 𝐷 = (LSAtoms‘𝑈)
13 dihglblem6.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
14 simpll 766 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
155, 13, 14dvhlmod 40577 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝑈 ∈ LMod)
16 simplll 774 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝐾 ∈ HL)
17 hlclat 38824 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ CLat)
1816, 17syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝐾 ∈ CLat)
19 simplrl 776 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝑆𝐵)
201, 4clatglbcl 18490 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
2118, 19, 20syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → (𝐺𝑆) ∈ 𝐵)
221, 5, 8, 13, 11dihlss 40717 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑆) ∈ 𝐵) → (𝐼‘(𝐺𝑆)) ∈ 𝑃)
2314, 21, 22syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → (𝐼‘(𝐺𝑆)) ∈ 𝑃)
241, 4, 5, 13, 8, 11dihglblem5 40765 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑥𝑆 (𝐼𝑥) ∈ 𝑃)
2524adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝑥𝑆 (𝐼𝑥) ∈ 𝑃)
26 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥))
2711, 12, 15, 23, 25, 26lpssat 38479 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → ∃𝑝𝐷 (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆))))
2827ex 412 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ((𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) → ∃𝑝𝐷 (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))))
29 simp1l 1195 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
305, 13, 8, 12dih1dimat 40797 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐷) → 𝑝 ∈ ran 𝐼)
3130adantlr 714 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → 𝑝 ∈ ran 𝐼)
32313adant3 1130 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝑝 ∈ ran 𝐼)
335, 8dihcnvid2 40740 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ ran 𝐼) → (𝐼‘(𝐼𝑝)) = 𝑝)
3429, 32, 33syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐼‘(𝐼𝑝)) = 𝑝)
35 simp3l 1199 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝑝 𝑥𝑆 (𝐼𝑥))
36 ssiin 5052 . . . . . . . . . . . . 13 (𝑝 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 𝑝 ⊆ (𝐼𝑥))
3735, 36sylib 217 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ∀𝑥𝑆 𝑝 ⊆ (𝐼𝑥))
38 simplll 774 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
39 simpll 766 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → (𝐾 ∈ HL ∧ 𝑊𝐻))
401, 5, 8, 13, 11dihf11 40734 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑃)
41 f1f1orn 6844 . . . . . . . . . . . . . . . . . . 19 (𝐼:𝐵1-1𝑃𝐼:𝐵1-1-onto→ran 𝐼)
4239, 40, 413syl 18 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → 𝐼:𝐵1-1-onto→ran 𝐼)
43 f1ocnvdm 7288 . . . . . . . . . . . . . . . . . 18 ((𝐼:𝐵1-1-onto→ran 𝐼𝑝 ∈ ran 𝐼) → (𝐼𝑝) ∈ 𝐵)
4442, 31, 43syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → (𝐼𝑝) ∈ 𝐵)
4544adantr 480 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → (𝐼𝑝) ∈ 𝐵)
46 simplrl 776 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → 𝑆𝐵)
4746sselda 3978 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → 𝑥𝐵)
481, 2, 5, 8dihord 40731 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑝) ∈ 𝐵𝑥𝐵) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼𝑥) ↔ (𝐼𝑝) 𝑥))
4938, 45, 47, 48syl3anc 1369 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼𝑥) ↔ (𝐼𝑝) 𝑥))
5039, 31, 33syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → (𝐼‘(𝐼𝑝)) = 𝑝)
5150adantr 480 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → (𝐼‘(𝐼𝑝)) = 𝑝)
5251sseq1d 4009 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼𝑥) ↔ 𝑝 ⊆ (𝐼𝑥)))
5349, 52bitr3d 281 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → ((𝐼𝑝) 𝑥𝑝 ⊆ (𝐼𝑥)))
5453ralbidva 3171 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → (∀𝑥𝑆 (𝐼𝑝) 𝑥 ↔ ∀𝑥𝑆 𝑝 ⊆ (𝐼𝑥)))
55543adant3 1130 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (∀𝑥𝑆 (𝐼𝑝) 𝑥 ↔ ∀𝑥𝑆 𝑝 ⊆ (𝐼𝑥)))
5637, 55mpbird 257 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ∀𝑥𝑆 (𝐼𝑝) 𝑥)
57 simp1ll 1234 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝐾 ∈ HL)
5857, 17syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝐾 ∈ CLat)
59443adant3 1130 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐼𝑝) ∈ 𝐵)
60 simp1rl 1236 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝑆𝐵)
611, 2, 4clatleglb 18503 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ (𝐼𝑝) ∈ 𝐵𝑆𝐵) → ((𝐼𝑝) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝐼𝑝) 𝑥))
6258, 59, 60, 61syl3anc 1369 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ((𝐼𝑝) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝐼𝑝) 𝑥))
6356, 62mpbird 257 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐼𝑝) (𝐺𝑆))
6458, 60, 20syl2anc 583 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐺𝑆) ∈ 𝐵)
651, 2, 5, 8dihord 40731 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑝) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼‘(𝐺𝑆)) ↔ (𝐼𝑝) (𝐺𝑆)))
6629, 59, 64, 65syl3anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼‘(𝐺𝑆)) ↔ (𝐼𝑝) (𝐺𝑆)))
6763, 66mpbird 257 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐼‘(𝐼𝑝)) ⊆ (𝐼‘(𝐺𝑆)))
6834, 67eqsstrrd 4017 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝑝 ⊆ (𝐼‘(𝐺𝑆)))
69 simp3r 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))
7068, 69pm2.21fal 1556 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ⊥)
7170rexlimdv3a 3155 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∃𝑝𝐷 (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆))) → ⊥))
7228, 71syld 47 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ((𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) → ⊥))
7310, 72mtoi 198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ¬ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥))
74 dfpss3 4082 . . . . . 6 ((𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) ↔ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
7574notbii 320 . . . . 5 (¬ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) ↔ ¬ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
76 iman 401 . . . . 5 (((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))) ↔ ¬ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
77 anclb 545 . . . . 5 (((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))) ↔ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆)))))
7875, 76, 773bitr2i 299 . . . 4 (¬ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) ↔ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆)))))
7973, 78sylib 217 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆)))))
809, 79mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
81 eqss 3993 . 2 ((𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥) ↔ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
8280, 81sylibr 233 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wfal 1546  wcel 2099  wne 2936  wral 3057  wrex 3066  {crab 3428  wss 3945  wpss 3946  c0 4318   ciin 4992   class class class wbr 5142  ccnv 5671  ran crn 5673  1-1wf1 6539  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7414  Basecbs 17173  lecple 17233  glbcglb 18295  meetcmee 18297  CLatccla 18483  LSubSpclss 20808  LSAtomsclsa 38440  Atomscatm 38729  HLchlt 38816  LHypclh 39451  DVecHcdvh 40545  DIsoBcdib 40605  DIsoHcdih 40695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-riotaBAD 38419
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17416  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-p1 18411  df-lat 18417  df-clat 18484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cntz 19261  df-lsm 19584  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-lmod 20738  df-lss 20809  df-lsp 20849  df-lvec 20981  df-lsatoms 38442  df-oposet 38642  df-ol 38644  df-oml 38645  df-covers 38732  df-ats 38733  df-atl 38764  df-cvlat 38788  df-hlat 38817  df-llines 38965  df-lplanes 38966  df-lvols 38967  df-lines 38968  df-psubsp 38970  df-pmap 38971  df-padd 39263  df-lhyp 39455  df-laut 39456  df-ldil 39571  df-ltrn 39572  df-trl 39626  df-tendo 40222  df-edring 40224  df-disoa 40496  df-dvech 40546  df-dib 40606  df-dic 40640  df-dih 40696
This theorem is referenced by:  dihglb  40808
  Copyright terms: Public domain W3C validator
OSZAR »