![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drnginvmuld | Structured version Visualization version GIF version |
Description: Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
drnginvmuld.b | ⊢ 𝐵 = (Base‘𝑅) |
drnginvmuld.z | ⊢ 0 = (0g‘𝑅) |
drnginvmuld.t | ⊢ · = (.r‘𝑅) |
drnginvmuld.i | ⊢ 𝐼 = (invr‘𝑅) |
drnginvmuld.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
drnginvmuld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
drnginvmuld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
drnginvmuld.1 | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
drnginvmuld.2 | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
Ref | Expression |
---|---|
drnginvmuld | ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnginvmuld.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | drnginvmuld.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | drnginvmuld.t | . 2 ⊢ · = (.r‘𝑅) | |
4 | drnginvmuld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
5 | drnginvmuld.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
6 | 4 | drngringd 20632 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | drnginvmuld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | drnginvmuld.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 1, 3, 6, 7, 8 | ringcld 20199 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
10 | drnginvmuld.1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
11 | drnginvmuld.2 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
12 | 1, 2, 3, 4, 7, 8 | drngmulne0 20654 | . . . 4 ⊢ (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) |
13 | 10, 11, 12 | mpbir2and 712 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ≠ 0 ) |
14 | 1, 2, 5, 4, 9, 13 | drnginvrcld 20648 | . 2 ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) ∈ 𝐵) |
15 | 1, 2, 5, 4, 8, 11 | drnginvrcld 20648 | . . 3 ⊢ (𝜑 → (𝐼‘𝑌) ∈ 𝐵) |
16 | 1, 2, 5, 4, 7, 10 | drnginvrcld 20648 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ 𝐵) |
17 | 1, 3, 6, 15, 16 | ringcld 20199 | . 2 ⊢ (𝜑 → ((𝐼‘𝑌) · (𝐼‘𝑋)) ∈ 𝐵) |
18 | eqid 2728 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
19 | 1, 2, 3, 18, 5, 4, 7, 10 | drnginvrld 20651 | . . . . . . . 8 ⊢ (𝜑 → ((𝐼‘𝑋) · 𝑋) = (1r‘𝑅)) |
20 | 19 | oveq1d 7435 | . . . . . . 7 ⊢ (𝜑 → (((𝐼‘𝑋) · 𝑋) · 𝑌) = ((1r‘𝑅) · 𝑌)) |
21 | 1, 3, 18, 6, 8 | ringlidmd 20208 | . . . . . . 7 ⊢ (𝜑 → ((1r‘𝑅) · 𝑌) = 𝑌) |
22 | 20, 21 | eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → (((𝐼‘𝑋) · 𝑋) · 𝑌) = 𝑌) |
23 | 22 | oveq2d 7436 | . . . . 5 ⊢ (𝜑 → ((𝐼‘𝑌) · (((𝐼‘𝑋) · 𝑋) · 𝑌)) = ((𝐼‘𝑌) · 𝑌)) |
24 | 23 | eqcomd 2734 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑌) · 𝑌) = ((𝐼‘𝑌) · (((𝐼‘𝑋) · 𝑋) · 𝑌))) |
25 | 1, 2, 3, 18, 5, 4, 8, 11 | drnginvrld 20651 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑌) · 𝑌) = (1r‘𝑅)) |
26 | 1, 3, 6, 16, 7, 8 | ringassd 20197 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝑋) · 𝑋) · 𝑌) = ((𝐼‘𝑋) · (𝑋 · 𝑌))) |
27 | 26 | oveq2d 7436 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑌) · (((𝐼‘𝑋) · 𝑋) · 𝑌)) = ((𝐼‘𝑌) · ((𝐼‘𝑋) · (𝑋 · 𝑌)))) |
28 | 24, 25, 27 | 3eqtr3d 2776 | . . 3 ⊢ (𝜑 → (1r‘𝑅) = ((𝐼‘𝑌) · ((𝐼‘𝑋) · (𝑋 · 𝑌)))) |
29 | 1, 2, 3, 18, 5, 4, 9, 13 | drnginvrld 20651 | . . 3 ⊢ (𝜑 → ((𝐼‘(𝑋 · 𝑌)) · (𝑋 · 𝑌)) = (1r‘𝑅)) |
30 | 1, 3, 6, 15, 16, 9 | ringassd 20197 | . . 3 ⊢ (𝜑 → (((𝐼‘𝑌) · (𝐼‘𝑋)) · (𝑋 · 𝑌)) = ((𝐼‘𝑌) · ((𝐼‘𝑋) · (𝑋 · 𝑌)))) |
31 | 28, 29, 30 | 3eqtr4d 2778 | . 2 ⊢ (𝜑 → ((𝐼‘(𝑋 · 𝑌)) · (𝑋 · 𝑌)) = (((𝐼‘𝑌) · (𝐼‘𝑋)) · (𝑋 · 𝑌))) |
32 | 1, 2, 3, 4, 14, 17, 9, 13, 31 | drngmulcan2ad 41762 | 1 ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 .rcmulr 17234 0gc0g 17421 1rcur 20121 invrcinvr 20326 DivRingcdr 20624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-oppr 20273 df-dvdsr 20296 df-unit 20297 df-invr 20327 df-drng 20626 |
This theorem is referenced by: prjspner1 42050 |
Copyright terms: Public domain | W3C validator |