![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsr | Structured version Visualization version GIF version |
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
dvdsr.3 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvdsr | ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr.2 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
2 | 1 | reldvdsr 20299 | . . 3 ⊢ Rel ∥ |
3 | 2 | brrelex12i 5733 | . 2 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
4 | elex 3490 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
5 | id 22 | . . . . 5 ⊢ ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌) | |
6 | ovex 7453 | . . . . 5 ⊢ (𝑧 · 𝑋) ∈ V | |
7 | 5, 6 | eqeltrrdi 2838 | . . . 4 ⊢ ((𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
8 | 7 | rexlimivw 3148 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
9 | 4, 8 | anim12i 612 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
10 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
11 | 10 | eleq1d 2814 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) |
12 | 10 | oveq2d 7436 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋)) |
13 | simpr 484 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
14 | 12, 13 | eqeq12d 2744 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌)) |
15 | 14 | rexbidv 3175 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
16 | 11, 15 | anbi12d 631 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
17 | dvdsr.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
18 | dvdsr.3 | . . . 4 ⊢ · = (.r‘𝑅) | |
19 | 17, 1, 18 | dvdsrval 20300 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)} |
20 | 16, 19 | brabga 5536 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
21 | 3, 9, 20 | pm5.21nii 378 | 1 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 Vcvv 3471 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 .rcmulr 17234 ∥rcdsr 20293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-dvdsr 20296 |
This theorem is referenced by: dvdsr2 20302 dvdsrmul 20303 dvdsrcl 20304 dvdsrcl2 20305 dvdsrtr 20307 dvdsrmul1 20308 opprunit 20316 crngunit 20317 rhmdvdsr 20447 subrgdvds 20525 dvdsruassoi 33101 dvdsruasso 33102 dvdsrspss 33103 |
Copyright terms: Public domain | W3C validator |