Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsruasso Structured version   Visualization version   GIF version

Theorem dvdsruasso 33102
Description: Two elements 𝑋 and 𝑌 of a ring 𝑅 are associates, i.e. each divides the other, iff they are unit multiples of each other. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
dvdsrspss.b 𝐵 = (Base‘𝑅)
dvdsrspss.k 𝐾 = (RSpan‘𝑅)
dvdsrspss.d = (∥r𝑅)
dvdsrspss.x (𝜑𝑋𝐵)
dvdsrspss.y (𝜑𝑌𝐵)
dvdsruassoi.1 𝑈 = (Unit‘𝑅)
dvdsruassoi.2 · = (.r𝑅)
dvdsruasso.r (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
dvdsruasso (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
Distinct variable groups:   𝑢, ·   𝑢,   𝑢,𝐵   𝑢,𝑅   𝑢,𝑈   𝑢,𝑋   𝑢,𝑌   𝜑,𝑢
Allowed substitution hint:   𝐾(𝑢)

Proof of Theorem dvdsruasso
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsrspss.b . . . . . 6 𝐵 = (Base‘𝑅)
2 dvdsrspss.d . . . . . 6 = (∥r𝑅)
3 dvdsruassoi.2 . . . . . 6 · = (.r𝑅)
41, 2, 3dvdsr 20301 . . . . 5 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌))
5 dvdsrspss.x . . . . . 6 (𝜑𝑋𝐵)
65biantrurd 532 . . . . 5 (𝜑 → (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌)))
74, 6bitr4id 290 . . . 4 (𝜑 → (𝑋 𝑌 ↔ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌))
81, 2, 3dvdsr 20301 . . . . 5 (𝑌 𝑋 ↔ (𝑌𝐵 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋))
9 dvdsrspss.y . . . . . 6 (𝜑𝑌𝐵)
109biantrurd 532 . . . . 5 (𝜑 → (∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋 ↔ (𝑌𝐵 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)))
118, 10bitr4id 290 . . . 4 (𝜑 → (𝑌 𝑋 ↔ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋))
127, 11anbi12d 631 . . 3 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)))
13 dvdsruasso.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ IDomn)
1413idomringd 21257 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
15 dvdsruassoi.1 . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑅)
16 eqid 2728 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
1715, 161unit 20313 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
1814, 17syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑅) ∈ 𝑈)
1918ad5antr 733 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (1r𝑅) ∈ 𝑈)
20 oveq1 7427 . . . . . . . . . . . . . 14 (𝑢 = (1r𝑅) → (𝑢 · 𝑋) = ((1r𝑅) · 𝑋))
2120eqeq1d 2730 . . . . . . . . . . . . 13 (𝑢 = (1r𝑅) → ((𝑢 · 𝑋) = 𝑌 ↔ ((1r𝑅) · 𝑋) = 𝑌))
2221adantl 481 . . . . . . . . . . . 12 (((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) ∧ 𝑢 = (1r𝑅)) → ((𝑢 · 𝑋) = 𝑌 ↔ ((1r𝑅) · 𝑋) = 𝑌))
2314ad5antr 733 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑅 ∈ Ring)
245ad5antr 733 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑋𝐵)
251, 3, 16, 23, 24ringlidmd 20208 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑋)
26 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑋 = (0g𝑅))
2726oveq2d 7436 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · 𝑋) = (𝑡 · (0g𝑅)))
28 simplr 768 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · 𝑋) = 𝑌)
29 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → 𝑡𝐵)
30 eqid 2728 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
311, 3, 30ringrz 20230 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑡𝐵) → (𝑡 · (0g𝑅)) = (0g𝑅))
3223, 29, 31syl2anc 583 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (𝑡 · (0g𝑅)) = (0g𝑅))
3327, 28, 323eqtr3rd 2777 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → (0g𝑅) = 𝑌)
3425, 26, 333eqtrd 2772 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑌)
3519, 22, 34rspcedvd 3611 . . . . . . . . . . 11 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 = (0g𝑅)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
36 isidom 21254 . . . . . . . . . . . . . . . 16 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3713, 36sylib 217 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3837simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ CRing)
3938ad5antr 733 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ CRing)
40 simp-5r 785 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑠𝐵)
41 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑡𝐵)
425ad5antr 733 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋𝐵)
43 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋 ≠ (0g𝑅))
44 eldifsn 4791 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐵 ∖ {(0g𝑅)}) ↔ (𝑋𝐵𝑋 ≠ (0g𝑅)))
4542, 43, 44sylanbrc 582 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑋 ∈ (𝐵 ∖ {(0g𝑅)}))
4614ad5antr 733 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ Ring)
471, 3, 46, 40, 41ringcld 20199 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) ∈ 𝐵)
481, 16ringidcl 20202 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
4946, 48syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
5013ad5antr 733 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑅 ∈ IDomn)
51 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑡 · 𝑋) = 𝑌)
5251oveq2d 7436 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · (𝑡 · 𝑋)) = (𝑠 · 𝑌))
53 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑌) = 𝑋)
5452, 53eqtrd 2768 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · (𝑡 · 𝑋)) = 𝑋)
551, 3, 46, 40, 41, 42ringassd 20197 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((𝑠 · 𝑡) · 𝑋) = (𝑠 · (𝑡 · 𝑋)))
561, 3, 16, 46, 42ringlidmd 20208 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((1r𝑅) · 𝑋) = 𝑋)
5754, 55, 563eqtr4d 2778 . . . . . . . . . . . . . . 15 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ((𝑠 · 𝑡) · 𝑋) = ((1r𝑅) · 𝑋))
581, 30, 3, 45, 47, 49, 50, 57idomrcan 32962 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) = (1r𝑅))
5946, 17syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (1r𝑅) ∈ 𝑈)
6058, 59eqeltrd 2829 . . . . . . . . . . . . 13 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → (𝑠 · 𝑡) ∈ 𝑈)
6115, 3, 1unitmulclb 20320 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑠𝐵𝑡𝐵) → ((𝑠 · 𝑡) ∈ 𝑈 ↔ (𝑠𝑈𝑡𝑈)))
6261simplbda 499 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑠𝐵𝑡𝐵) ∧ (𝑠 · 𝑡) ∈ 𝑈) → 𝑡𝑈)
6339, 40, 41, 60, 62syl31anc 1371 . . . . . . . . . . . 12 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → 𝑡𝑈)
64 oveq1 7427 . . . . . . . . . . . . . 14 (𝑢 = 𝑡 → (𝑢 · 𝑋) = (𝑡 · 𝑋))
6564eqeq1d 2730 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → ((𝑢 · 𝑋) = 𝑌 ↔ (𝑡 · 𝑋) = 𝑌))
6665adantl 481 . . . . . . . . . . . 12 (((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) ∧ 𝑢 = 𝑡) → ((𝑢 · 𝑋) = 𝑌 ↔ (𝑡 · 𝑋) = 𝑌))
6763, 66, 51rspcedvd 3611 . . . . . . . . . . 11 ((((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) ∧ 𝑋 ≠ (0g𝑅)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
6835, 67pm2.61dane 3026 . . . . . . . . . 10 (((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ 𝑡𝐵) ∧ (𝑡 · 𝑋) = 𝑌) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
6968r19.29an 3155 . . . . . . . . 9 ((((𝜑𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7069an32s 651 . . . . . . . 8 ((((𝜑𝑠𝐵) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7170ex 412 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) → ((𝑠 · 𝑌) = 𝑋 → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
7271an32s 651 . . . . . 6 (((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ 𝑠𝐵) → ((𝑠 · 𝑌) = 𝑋 → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
7372imp 406 . . . . 5 ((((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ 𝑠𝐵) ∧ (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7473r19.29an 3155 . . . 4 (((𝜑 ∧ ∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌) ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7574anasss 466 . . 3 ((𝜑 ∧ (∃𝑡𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠𝐵 (𝑠 · 𝑌) = 𝑋)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
7612, 75sylbida 591 . 2 ((𝜑 ∧ (𝑋 𝑌𝑌 𝑋)) → ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌)
77 dvdsrspss.k . . . 4 𝐾 = (RSpan‘𝑅)
785ad2antrr 725 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑋𝐵)
799ad2antrr 725 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑌𝐵)
8014ad2antrr 725 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ Ring)
81 simplr 768 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢𝑈)
82 simpr 484 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 · 𝑋) = 𝑌)
831, 77, 2, 78, 79, 15, 3, 80, 81, 82dvdsruassoi 33101 . . 3 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑋 𝑌𝑌 𝑋))
8483r19.29an 3155 . 2 ((𝜑 ∧ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌) → (𝑋 𝑌𝑌 𝑋))
8576, 84impbida 800 1 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wrex 3067  cdif 3944  {csn 4629   class class class wbr 5148  cfv 6548  (class class class)co 7420  Basecbs 17180  .rcmulr 17234  0gc0g 17421  1rcur 20121  Ringcrg 20173  CRingccrg 20174  rcdsr 20293  Unitcui 20294  RSpancrsp 21103  Domncdomn 21227  IDomncidom 21228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-minusg 18894  df-sbg 18895  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-cring 20176  df-oppr 20273  df-dvdsr 20296  df-unit 20297  df-invr 20327  df-nzr 20452  df-domn 21231  df-idom 21232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »