MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  el2xptp0 Structured version   Visualization version   GIF version

Theorem el2xptp0 8044
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.)
Assertion
Ref Expression
el2xptp0 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) ↔ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩))

Proof of Theorem el2xptp0
StepHypRef Expression
1 xp1st 8029 . . . . . 6 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (1st𝐴) ∈ (𝑈 × 𝑉))
21ad2antrl 726 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (1st𝐴) ∈ (𝑈 × 𝑉))
3 3simpa 1145 . . . . . . 7 (((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
43adantl 480 . . . . . 6 ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
54adantl 480 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌))
6 eqopi 8033 . . . . 5 (((1st𝐴) ∈ (𝑈 × 𝑉) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌)) → (1st𝐴) = ⟨𝑋, 𝑌⟩)
72, 5, 6syl2anc 582 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (1st𝐴) = ⟨𝑋, 𝑌⟩)
8 simprr3 1220 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (2nd𝐴) = 𝑍)
97, 8jca 510 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍))
10 df-ot 4639 . . . . . 6 𝑋, 𝑌, 𝑍⟩ = ⟨⟨𝑋, 𝑌⟩, 𝑍
1110eqeq2i 2740 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ 𝐴 = ⟨⟨𝑋, 𝑌⟩, 𝑍⟩)
12 eqop 8039 . . . . 5 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (𝐴 = ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
1311, 12bitrid 282 . . . 4 (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) → (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
1413ad2antrl 726 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ ↔ ((1st𝐴) = ⟨𝑋, 𝑌⟩ ∧ (2nd𝐴) = 𝑍)))
159, 14mpbird 256 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))) → 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩)
16 opelxpi 5717 . . . . . . . 8 ((𝑋𝑈𝑌𝑉) → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉))
17163adant3 1129 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑉))
18 simp3 1135 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑍𝑊)
1917, 18opelxpd 5719 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
2010, 19eqeltrid 2832 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
2120adantr 479 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊))
22 eleq1 2816 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ↔ ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊)))
2322adantl 480 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ↔ ⟨𝑋, 𝑌, 𝑍⟩ ∈ ((𝑈 × 𝑉) × 𝑊)))
2421, 23mpbird 256 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → 𝐴 ∈ ((𝑈 × 𝑉) × 𝑊))
25 2fveq3 6905 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (1st ‘(1st𝐴)) = (1st ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)))
26 ot1stg 8011 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (1st ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)) = 𝑋)
2725, 26sylan9eqr 2789 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (1st ‘(1st𝐴)) = 𝑋)
28 2fveq3 6905 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (2nd ‘(1st𝐴)) = (2nd ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)))
29 ot2ndg 8012 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (2nd ‘(1st ‘⟨𝑋, 𝑌, 𝑍⟩)) = 𝑌)
3028, 29sylan9eqr 2789 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (2nd ‘(1st𝐴)) = 𝑌)
31 fveq2 6900 . . . . 5 (𝐴 = ⟨𝑋, 𝑌, 𝑍⟩ → (2nd𝐴) = (2nd ‘⟨𝑋, 𝑌, 𝑍⟩))
32 ot3rdg 8013 . . . . . 6 (𝑍𝑊 → (2nd ‘⟨𝑋, 𝑌, 𝑍⟩) = 𝑍)
33323ad2ant3 1132 . . . . 5 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (2nd ‘⟨𝑋, 𝑌, 𝑍⟩) = 𝑍)
3431, 33sylan9eqr 2789 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (2nd𝐴) = 𝑍)
3527, 30, 343jca 1125 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍))
3624, 35jca 510 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩) → (𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)))
3715, 36impbida 799 1 ((𝑋𝑈𝑌𝑉𝑍𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st𝐴)) = 𝑋 ∧ (2nd ‘(1st𝐴)) = 𝑌 ∧ (2nd𝐴) = 𝑍)) ↔ 𝐴 = ⟨𝑋, 𝑌, 𝑍⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cop 4636  cotp 4638   × cxp 5678  cfv 6551  1st c1st 7995  2nd c2nd 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-ot 4639  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-iota 6503  df-fun 6553  df-fv 6559  df-1st 7997  df-2nd 7998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »