MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqopi Structured version   Visualization version   GIF version

Theorem eqopi 8023
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
eqopi ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)

Proof of Theorem eqopi
StepHypRef Expression
1 xpss 5689 . . 3 (𝑉 × 𝑊) ⊆ (V × V)
21sseli 3969 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V))
3 elxp6 8021 . . . 4 (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V)))
43simplbi 496 . . 3 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5 opeq12 4872 . . 3 (((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶) → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨𝐵, 𝐶⟩)
64, 5sylan9eq 2785 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)
72, 6sylan 578 1 ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  cop 4631   × cxp 5671  cfv 6543  1st c1st 7985  2nd c2nd 7986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7987  df-2nd 7988
This theorem is referenced by:  op1steq  8031  el2xptp0  8034  dfoprab3  8052  1stconst  8098  2ndconst  8099  upxp  23540  opreu2reuALT  32315  cnvoprabOLD  32542  gsummpt2d  32803  sitgaddlemb  34021
  Copyright terms: Public domain W3C validator
OSZAR »